期刊文献+

正交弹性材料中双周期裂纹反平面问题的封闭解 被引量:3

A closed-form solution for the anti-plane problem of anisotropic elastic materials with doubly periodic cracks
下载PDF
导出
摘要 研究了无限大正交弹性材料中含双周期裂纹的反平面问题,其基本胞元含有三条裂纹,且三条裂纹的中心恰好位于一等腰三角形顶点。运用椭圆函数、保角变换理论、施瓦兹公式获得了该问题应力场的封闭解,并得到了裂纹尖端处的应力强度因子。该问题结果取特殊情形退化对应于单排共线周期裂纹的解答。通过数值算例,分析了双周期裂纹归一化的应力强度因子随双周期裂纹的横向间距和纵向间距之比b/a分别取10、5、2、1时的变化曲线。结果表明:对于一定的横向间距,应力奇异因子随纵向间距的增大而减小,但随着纵向间距的增大,纵向间距对应力奇异因子的影响变得不明显;对于一定的纵向间距,应力奇异因子随横向间距的减小而减小,但随着横向间距的减小,横向间距对应力奇异因子的影响变得不明显。 The anti-plane problem of infinite orthogonal anisotropic elastic materials with doubly periodic cracks is studied.The basic unit cell of doubly periodic problem contains three cracks which centers are on the top of an isosceles triangle.By using methods of the conformal mapping,the elliptical function and the Schwarz's formula,the solution of the stress field is obtained in closed-form and thereby,the stress intensity factors are derived.The solutions of collinear periodic cracks problem can be evolved from the general solution as a special case for this problem.Numerical results are presented to show the effects of the microstructure parameters of doubly periodic problem on the stress intensity factors under b/a equals to 10,5,2 and 1,respectively.From the numerical results,some conclusions can be given: the stress intensity factor tends to increase with the decreasing of the longitudinal spacing when the horizontal spacing is given.However,as the longitudinal spacing increases,the effect of the longitudinal spacing on the stress intensity factor tends to be less sensitive.On the other hand,the stress intensity factor tends to decrease with the decreasing of the horizontal spacing when the longitudinal spacing is given.However,as the horizontal spacing decreases,the effect of the horizontal spacing on the stress intensity factors tends to be less sensitive.
出处 《应用力学学报》 CAS CSCD 北大核心 2013年第4期475-479,641,共5页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(10962008 51061015 61045) 高等学校博士学科点专项科研基金(20116401110002) 陕西省教育厅专项科研计划项目(2013JK0572) 宝鸡文理学院科研一般项目(YK1025)
关键词 弹性材料 双周期裂纹 应力强度因子 anisotropic elastic materials doubly periodic cracks stress intensity factors.
  • 相关文献

参考文献10

二级参考文献20

共引文献12

同被引文献24

  • 1郑可.带裂缝的双周期各向异性平面弹性基本问题[J].应用数学与计算数学学报,1993,7(1):14-20. 被引量:8
  • 2郝天护.双周期裂纹反平面问题的一个闭合解[J].清华大学学报,1979,19(3):11-18.
  • 3路见可,蔡海涛.平面弹性理论的周期问题[M].长沙:湖南科学技术出版社,1986.
  • 4LI Xing. Application of doubly quasi-periodic boundary value problems in elasticity theory[D]. Berlin: Berlin Free University, 1999.
  • 5MUSKHELISHVILI N I. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Cambridge: Cam- bridge University Press, 1953.
  • 6刘士强.弹性长条的基本问题[J].数学杂志,1984,2(4):165—176.
  • 7李星,吴跃军.各向异性弹性长条的基本问题[J].理论与应用力学学报,1992,3(8):21-24.
  • 8SHECHTMAN D, BLECH I, GRATIAS D, et al. Metallic phase with long-range orientational order and no trans- lational symmetry[J]. Physical Review Letters, 1984, 53(20). 1951-1953.
  • 9FAN Tian-you. Mathematical Theory of Elasticity of Quasicrystals and Its Applications [M]. Beijing. Science Press,2010.
  • 10FAN Tian-you. Mathematical Theory of Elasticity of Quasicrystals and Its Applications[M]. Beijing= Science Press,2010.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部