期刊文献+

Al-Cu-Mg-Ag合金强化相价电子结构与热稳定性 被引量:2

Relationships between the Valence Electron Structures of Precipitated Phases and Heat Stability of Al-Cu-Mg-Ag Alloys
原文传递
导出
摘要 基于固体与分子经验电子理论,计算了Al-Cu-Mg-Ag合金中Ω、S与θ′相的价电子结构,用强化相最强共价键的共价电子对数nA分析并研究了Ω、S、θ′相与合金热稳定性的关系。结果表明,Ω、S与θ′相最强键共价电子对数nA分别为0.6591、0.5626、0.4917;Ω、S与θ′相最强键均远强于合金基体α-Al相的最强键,这是Al-Cu-Mg-Ag合金第二相强化的微观本质;Ω相耐热性高于θ′相与S相的原因在于Ω相原子所成共价键键强优于θ′与S相的共价键键强,这也是为获得具有良好高温性能的Al-Cu-Mg-Ag合金应尽量抑制θ′、S相形核,促进Ω相形核的原因。 Based on the empirical electron theory of solids and molecules, the valence electron structures ofΩ,S and θ' in Al-Cu-Mg-Ag alloys were calculated, and the relationship between the phases of 19, S with θ' and heat stability was analyzed with the help of the covalence electron pairs nA of the strongest covalence bond. It is shown that the value of nA of 19,S and θ' is 0. 659 1, 0. 562 6 and 0. 491 7, respectively, which is far bigger than that of the matrix a-Al and responsible for the second phase strengthe- ning. The heat stability of 19 is higher than that of S and θ' , which is attributed to the higher covalence bond strength of 19 than that of S and θ', so the nucleation of S and θ' should be restrained to promote the nucleation of 19 as possible as to prepare Al-Cu-Mg-Ag alloys with better high-temperature properties.
出处 《特种铸造及有色合金》 CAS CSCD 北大核心 2013年第8期772-775,共4页 Special Casting & Nonferrous Alloys
基金 辽宁工业大学大学生创新创业训练计划项目(2012032) 辽宁工业大学2012教师科研启动基金项目(2012-7)
关键词 AL-CU-MG-AG合金 强化相 价电子结构 热稳定性 Al-Cu-Mg-Ag Alloys Strengthening Phase Valence Electron Structure Heat Stability
  • 相关文献

参考文献10

二级参考文献103

  • 1余日成,刘志义,刘延斌,徐敏,阎宽,马飞跃.Al-Cu-Mg-Ag系高强耐热合金的热加工工艺研究[J].金属热处理,2006,31(5):75-79. 被引量:13
  • 2Muddle B C,Polmear I J. The precipitate Ω phase in Al-Cu-Mg-Ag alloys[ J]. Acta Metallurgica, 1989, 37 (3) :777 -789.
  • 3Scott V D, Kerry S, Trumper R L. Nucleation and growth of precipitates in Al-Cu-Mg-Ag alloys[ J ]. Materials Science and Technology, 1987, 3 (10) :827 -835.
  • 4Taylor J A, Parker B A, Polmear I J. Precipitation in Al-Cu-Mg-Ag casting alloy[J]. Metal Science, 1978, 12(10) :478 -482.
  • 5Ringer S P, Hono K, Polmear I J, et al. Nucleation of precipitates in aged Al-Cu-Mg-(Ag) alloys with high Cu:Mg ratios[ J]. Acta Materialia, 1996, 44(5) :1883 - 1898.
  • 6Moore K T, Howe J M, Veblen D R. High-resolutlon and energy-filtered TEM imaging of Ag segregation to planar precipitate-matrix interfaces in an Al-Cu-Mg-Ag alloy [ J ]. Philosophical Magazine B, 2002, 82 ( 1 ) : 13 - 33.
  • 7Reich L, Murayama M, Hono K. Evolution of Ω phase in an Al-Cu-Mg-Ag alloy -a three-dimensional atom probe study[ J]. Acta Materialia, 1998, 46(17) :6053 -6062.
  • 8Shollock B A, Grovenor C R M, Knowlcs K M. Compositional studies of Ω and θ'prime precipitates in an Al-Cu-Mg-Ag alloy [ J ]. Scripta Metallurgica et Materialia, 1990, 24 ( 7 ) : 1239 - 1244.
  • 9Ringer S P, Yeung W, Muddle B C, et al. Precipitate stability in Al-Cu-Mg-Ag alloys aged at high temperatures [ J ]. Acta Metallurgica et Materialia, 1994, 42 (5) : 1715 - 1725.
  • 10Lumley Roger N, Morton A J, Polmear I J. Enhanced creep performance in an Al-Cu-Mg-Ag alloy through underageing[ J]. Acta Materialia, 2002, 50( 14 ) :3597 - 3608.

共引文献79

同被引文献37

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部