期刊文献+

基于改进ORB算法的遥感图像自动配准方法 被引量:33

Automatic registration method for remote sensing images based on improved ORB algorithm
下载PDF
导出
摘要 针对遥感图像自动配准的问题,提出了一种基于改进定向二进制简单描述符(oriented brief,ORB)算法的遥感图像自动配准方法。该方法主要由3个步骤组成:首先是特征匹配,利用改进的ORB算法提取特征点,并建立描述符进行匹配,获取初始控制点;然后采用随机采样一致性方法,结合变换参数估计,剔除可能的错误匹配;最后利用最小二乘法估计的变换参数,对图像进行几何纠正。分别利用2组卫星光学遥感图像和1组SAR图像进行基于改进ORB算法的自动配准方法试验,并与基于尺度不变特征变换(scale-invariant feature tramsform,SIFT)算法和加速鲁棒性特征(speeded up robust features,SURF)算法的自动配准方法进行了比较。试验结果表明,该方法能获得与SIFT算法和SURF算法相当或者更高的配准精度,并在配准效率上有较大提高。 Aiming at reliable registration of remote sensing images,the authors present in this paper a remote sensing image registration method based on improved ORB(oriented brief) algorithm.The proposed method mainly includes three stages: The first stage is feature matching,the improved ORB algorithm is used to detect features and build descriptors,and the descriptors are matched to obtain initial control points.The second stage is to employ RANSAC(random sample consensus) processing via transformation parameters estimation to remove possible wrong matching points.The third stage is to rectify the image based on the transformation parameters calculated by the least square method.The proposed method is evaluated based on two sets of optical and SAR remote sensing images,and is compared with the registration methods based on SIFT and SURF algorithm.The results show that the method proposed in this paper can provide the same accurate remote sensing image registration result as or even the higher result than the methods based on SIFT and SURF algorithm,and can obtain improved efficiency.
出处 《国土资源遥感》 CSCD 北大核心 2013年第3期20-24,共5页 Remote Sensing for Land & Resources
基金 国家863计划项目(编号:2012AA120801) 国家自然科学基金项目(编号:41201472) 中国博士后科学基金项目(编号:2012M511413) 湖南省高校创新平台开放基金项目(编号:12K009)共同资助
关键词 遥感图像 图像配准 ORB算法 随机采样一致性 remote sensing image image registration ORB(oriented brief) algorithm random sample consensus(RANSAC)
  • 相关文献

参考文献13

  • 1Kern J P,Pattichis M S.Robust multispectral image registration using mutual-information models[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(5):1494-1505.
  • 2韦春桃,吴平,张祖勋,张剑清.一种改进的相位相关的影像配准方法[J].测绘通报,2011(4):19-22. 被引量:5
  • 3Liu X Z,Tian Z,Chai C Y,et al.Multiscale registration of remote sensing image using robust SIFT features in steerable-domain[J].The Egyptian J Remote Sensing and Space Sci,2011,14(2):63-72.
  • 4李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 5林晓帆,林立文,邓涛.基于SURF描述子的遥感影像配准[J].计算机工程,2010,36(12):216-218. 被引量:28
  • 6Calonder M,Lepetit V,Ozuysal M,et al.BRIEF:Computing a local binary descriptor very fast[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(6):1281-1298.
  • 7Rublee E,Rabaud V,Konolige K,et al.ORB:An efficient alternative to SIFT or SURF[C]//2011 International Conference on Computer Vision,Barcelona,Spain,2011:2564-2571.
  • 8Rosten E,Drummond T.Machine learning for high-speed corner detection[C]//Lecture Notes in Computer Science,2006,3951:430-443.
  • 9李慧,蔺启忠,刘庆杰.基于FAST和SURF的遥感图像自动配准方法[J].国土资源遥感,2012,24(2):28-33. 被引量:12
  • 10Fischer M A,Bolles R C.Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography[J].Communications of the ACM,1981,24(6):381-395.

二级参考文献36

  • 1李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 2Lowe D G.Distinctive Image Features from Scale Invariant KeypointslJ].International Journal of Computer Vision,2004,60(2):91-110.
  • 3Mikolajczyk K,Schmid C.A Performance Evaluation of Local Descriptors[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2005,27(10):1615-1630.
  • 4Ke Yan,Sukthankar R.PCA-SIFT:A More Distinctive Representation for Local Image Descriptors[C] //Proc.of 2004 IEEE Conf.on Computer Vision and Patten Recognition.[S.l.] :IEEE Press,2004.
  • 5Bay H.Surf:Speeded up Robust Features[C] //Proc.of the 9th European Conf.on Computer Vision.[S.l.] :IEEE Press,2006.
  • 6Zitova B, Flusser J. Image Registration Methods : A Survey [ J ]. Image and Vision Computing,2003,21 ( 11 ) :977 - 1000.
  • 7Brown L G. A Survey of Image Registration Techniques [ J ]. ACM Computing Surveys, 1992,24 (4) :325 - 376.
  • 8Lowe D G. Distinctive Image Features from Scale - Invariant Key points [ J ]. International Journal of Computer Vision,2004,60 ( 2 ) : 91 - 110.
  • 9Cheung W, Hamarneh G. N - SIFT: N - dimensional Scale Invari- ant Feature Transform for Matching Medical Images[ C]//IEEE International Symposium on Biomedical Imaging, from Nano to Macro, Arlington, VA,2007:720 - 723.
  • 10Yu L,Zhang D R, Holden E J. A Fast and Fully Automatic Regis- tration Approach Based on Point Features for Multi - source.

共引文献188

同被引文献210

引证文献33

二级引证文献225

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部