期刊文献+

基于Bhattacharyya距离的典型地物波谱特征差异性分析 被引量:5

The Spectral Characteristics Separability Analysis of Spectral Database of Typical Objects of Land Surface based on Bhattacharyya Distance
原文传递
导出
摘要 地物波谱数据主要应用于定量遥感与影像分类等相关基础研究,对各条光谱曲线之间进行定量化的光谱差异性分析具有重要意义。从USGS及JHU地物波谱库中挑选了在土地覆盖分类层次具有意义的植被(73条)、人工材料(100条)与土壤(30条)3种类型共203条地物波谱数据,以分层分类体系在4.2~2.5μm的波长范围内分析比较各类典型地物材料的光谱特征,以B距离(Bhattacharyya Distance)作为指标定量计算不同类别地物波谱间的光谱差异性。结果表明:波谱库中金属、砖石和混凝土3类人工材料光谱对于植被、土壤等自然材料光谱具有较大的光谱差异性,而塑料与自然地物间的光谱差异度最小,在此基础上统计了最能反映这些地物光谱特征差异的最优波段。该方法能够量化多种光谱曲线间的差异性并得到最佳的区分波段,从而为地物材料光谱及高光谱数据分类提供参考。 Typical land surface spectrum data are mainly applied in related basic research of quantitative re mote sensing and image classification. We selected representatively spectral library set of vegetation spec trum(73 items) ,manmade spectrum(100 items)and soil spectrum(30 items) from USGS and JHU spectral library, and analysed typical separability features of materials spectral features in 4.2 ~ 2.5 ~m wavelength range within a hierarchical classification scheme, Application of Bhattacharyya distance to quantitatively calculated among different categories objects spectrum spectral differences, the calculation results show that spectrum separability metal, brick and concrete manmade material spectrum for vegetation, soil and other natural materials spectrum have greater spectral differences, and separability of plastic between natu ral features is smaller. Additionally, an evaluation of the most suitable wavelengths for separation of spec tral library set identified specific spectral features that provided the best separation. Based on the statistical characteristics of spectral differences could reflect the optimal band. The study provides a basic knowledge reference of spectral discrimination analysis in a variety of material spectrum and also have the certain ref erence significance of remote sensing image land classification in a larger scale.
出处 《遥感技术与应用》 CSCD 北大核心 2013年第4期707-713,共7页 Remote Sensing Technology and Application
基金 国家自然科学基金项目(40871203 40971228) 国家863计划项目(2009AA12Z148 2009AA12Z123) 水体污染控制与治理科技重大专项项目(2008ZX07318-001)
关键词 波谱库 BHATTACHARYYA距离 光谱特征 光谱差异 遥感 Spectral library Bhattacharyya distance Spectral analysis Spectral discrimination Remotesensing
  • 相关文献

参考文献15

  • 1Ben-Dor E, Levin N, Saaroni H. A Spectral based Recognition of the Urban Environment Using the Visible and Near-infra- red Spectral Region (0.4:1.1 /zm) :A Case Study over Tel- Aviv, Israel[J]. International Journal of Remote Sensing, 2001,22(11):2193-2218.
  • 2Green R O,Eastwood M L,Sarture C M,et al. Imaging Spec- troscopy and the Airborne Visible/Infrared Imaging Spec- trometer (AVIRIS)[J]. Remote Sensing of Environment, 1998,65(3) :227-248.
  • 3施健,柳钦火,闻建光,唐勇,窦宝成,王锦地,张立新.面向电子政务的全国典型地物波谱数据服务平台设计与实现[J].遥感技术与应用,2011,26(4):520-526. 被引量:10
  • 4Clark R N,Swayze G A,Wise R,et al. USGS Digital SpectralLibrary Splib06a: LT. S. Geological Survey, Digital Data Series 231[EB/OL]. http://speclab, cr. usgs. gov/spectral, lib06, 2007,2012.
  • 5Baldridge A M, Hook S J, Grove C I, et a l. The ASTER Spec- tral Library Version 2. 0 [J]. Remote Sensing of Environ- ment,2009,113(4) :711-715.
  • 6Franke J, Roberts D A, Halligan K, et al. Hierarchical Multi pie Endmember Speetral Mixture Analysis (MESMA) of Hy- perspectral Imagery for Urban Environments [J]. Remote Sensing of Environment,2009,113(8) :1712-1723.
  • 7Ridd M K. Exploring a V-I-S (Vegetation-Impervious Sur face-Soil) Model for Urban Ecosystem Analysis Through Re mote Sensing: Comparative Anatomy for Cities[J]. Interna- tional Journal of Remote Sensing, 1995,16(12) : 2165-2185.
  • 8Herold M,Roberts D A,Gardner M E,et al. Dennison, Spec- trometry for Urban Area Remote Sensing-Development and Analysis of a Speetral Library from 350 to 2400 nm[J]. Re- mote Sensing of Environment,2004,91(3-4):304 319.
  • 9Xuan G, Chai P, Wu M. Bhattacharyya Distance Feature Se- lection[C]//Proceedings of the 13th International Conference on Pattern Recognition, Vienna, Austria, 1996.
  • 10Mausel P W,Kramber W J,Lee J K. Optimum Band Selection for Supervised Classification of Multispectral Data[J] Photo grammetric Engineering and Remote Sensing, 1990, 56:55 60.

二级参考文献22

共引文献25

同被引文献80

引证文献5

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部