期刊文献+

前手性酮全细胞转化体系中甲酸脱氢酶C-端无序结构与转化效率的关系研究

Study of the Relationship between the Disordered C Terminusin of Formate Dehydrogenase and the Conversion Rate in the Whole-cell Catalysis of Prochiral Acetone
原文传递
导出
摘要 目的:构建前手性酮类化合物的重组全细胞催化体系,并研究CbFDH C-端无序的11个氨基酸与酶活性的关系。方法:利用基因工程方法构建野生型LbADH,CbFDH及C-端11个氨基酸缺失的CbFDH截短突变体的表达菌株;SDS-PAGE分析其表达方式及表达量,利用分光光度计法测定全菌破碎上清中的酶活性;将含野生型LbADH及CbFDH的菌株与底物混合孵育,考察双菌全细胞体系的催化效果;并将含野生型CbFDH及CbFDHΔ354-364的菌液分别与含野生型LbADH的菌株混合催化苯乙酮的转化,比较两种菌的协助转化效率。结果:构建了重组表达载体pETDuet-1-adh,pETDuet-1-fdh及pETDuet-1-fdhΔ354-364,并实现了在大肠杆菌中的异源表达,含野生型LbADH及CbFDH的两种菌株能够实现苯乙酮的协同转化,转化率为24.4%,产物对映体纯度为96.79%;CbFDH及CbFDHΔ354-364分别占上清总蛋白的28.54%及37.72%,C-端的缺失未影响CbFDH的可溶性表达,但CbFDHΔ354-364全菌上清催化NAD+转化为还原型NADH的效率降低,为CbFDH粗酶液的29.82%;且重组菌株Rossetta(DE3)-pETDuet-1-fdhΔ354-364与Rossetta(DE3)-pETDuet-1-adh协同转化苯乙酮的转化率降低至8%。结论:重组菌株Rossetta(DE3)-pETDuet-1-adh与Rossetta(DE3)-pETDuet-1-fdh能够协同催化苯乙酮转化,转化效率为24.4%,产物对映体纯度为96.79%;重组菌株Rossetta(DE3)-pETDuet-1-fdhΔ354-364与Rossetta(DE3)-pETDuet-1-adh协同转化苯乙酮的效率为Rossetta(DE3)-pETDuet-1-fdh与Rossetta(DE3)-pETDuet-1-adh协同转化效率的32.79%,且Rossetta(DE3)-pETDuet-1-fdhΔ354-364全菌上清催化还原型辅酶再生的效率降低,提示C-端无序的11个氨基酸残基对CbFDH酶活性的发挥起着重要的作用。 Objective: Construct the whole cell biocatalysis system for the reduction of prochiral carbonyal compounds. And valuate the function of the disordered C terminus in the catalysis of formate dehydrogenase from Candida boidinii. Methods: The recombinant strains for the expression of LbADH , CbFDH and CbFDH△354-364were constructed by the genetic engineering methods. The expression of recombinant proteins were analyzed by SDS-PAGE, and the activity of the whole soluble proteins was determined photometrically at 340 nm. Rossetta (DE3)-pETDuet-1-adh and Rossetta (DE3)-pETDuet-1-fdh were mixed and incubated with acetophenone, the products were analyzed by high performance liquid chromatography (HPLC). To compare the NADH regeneration rate of Rossetta ( DE3 ) -pETDuet-1 -fdh△354-364 and Rossetta ( DE3 ) -pETDuet-1-fdh, the two strains were mixed with Rossetta( DE3 )-pETDuet-1-adh separately, and incubated with acetophenone, the products were detected timely. Results: The recombinant plasmid pETDuet-1-adh, pETDuet-l-fdh and pETDuet-1-fdh△354-364 were constructed correctly. The recombinant proteins LbADH, CbFDH and CbFDH△354-364 could be expressed solublely. The two recombinant strains harboring LbADH and CbFDH separately can be used coupled for the asymmetric reduction of acetophenone, the conversion rate reached 24.4% and enantiomeric excess reached 96.79% ; the soluble expression of CbFDH△354-364 has no significant difference compared with CbFDH, but when using the whole soluble proteins of Rossetta (DE3)-pETDuet-l-fdh△354-364 catalyzed the regeneration of NADH, the conversion rate was sharply decreased to 8% when compared with Rossetta (DE3)-pETDuet-l-fdh. Conclusions: The recombinant strains Rossetta ( DE3 ) -pETDuet-1-fdhA354364 and Rossetta ( DE3 ) -pETDuet-1 -adh could be used coupled for the reduction of acetophenone, resulted in a chemical yield of 24. 4% and an enantiomeric excess of 96. 79%. Rossetta ( DE3 )-pETDuet-1-adh and Rossetta ( DE3 )-pETDuet-1-fdh were mixed and incubated with acetophenone, the conversion rate was decreased 32.79% compared with Rossetta (DE3)-pETDuet-1-fdh mixed with Rossetta (DE3)-pETI)uet-1-adh. The disordered residues in C terminus of CbFDH may play an important role in the catalysis process of CbFDH.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2013年第8期1-9,共9页 China Biotechnology
基金 国家自然科学基金(81000763) 国家科技重大专项(2012ZX09301003) 国家"973"计划(2009CB52604)资助项目
关键词 博伊丁假丝酵母 甲酸脱氢酶 辅酶再生 全细胞催化 结构改造 Candida boidinii Formate dehydrogenase Cofactor regeneration Whole cell biocatalysisStructure alteration
  • 相关文献

参考文献2

二级参考文献30

  • 1张翀,邢新会.辅酶再生体系的研究进展[J].生物工程学报,2004,20(6):811-816. 被引量:21
  • 2许娜,王海燕,聂尧,徐岩,肖荣.近平滑假丝酵母(R)-专一性羰基还原酶基因的克隆与表达[J].微生物学通报,2006,33(4):112-118. 被引量:6
  • 3聂尧,徐岩,王海燕,许娜,肖荣.重组大肠杆菌不对称还原2-羟基苯乙酮合成(R)-苯基乙二醇[J].化工进展,2006,25(10):1231-1236. 被引量:16
  • 4黄志华,张延平,刘铭,王宝光,曹竹安.甲酸脱氢酶在Klebsiella pneumoniae中的表达和功能分析[J].微生物学报,2007,47(1):64-68. 被引量:14
  • 5Schmid A, Dordick JS, Hauer B, et al. Industrial biocatalysis today and tomorrow. Nature, 2001, 409 (1): 258-268.
  • 6Liese A, Karutz M, Kamphuis J, et al. Resolution of 1-phenyl- 1,2-ethanediol by enantioselective oxidation overcoming product inhibition by continuous extraction. Biotechnology and Bioengineering, 1996, 51: 544-550.
  • 7Andreas L, MuriUo VF. Production of fine chemicals using biocatalysis. Current Opinion in Biotechnology, 1999, 10 (6): 595-603.
  • 8Manzocchi A, Fiecchi A. Stereochemically controlled bakers'- yeast-mediated reductions: synthesis of (S)-(+)-1,2-propanediol and (S)-(-)-1,3-butanediol, 1-benzyl ethers. Synthesis, 1987: 1007-1009.
  • 9Weekbeeker A, Hummel W. Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP^+-dependent alcohol dehydrogenase and NAD^+-dependent formate dehydrogenase. Biotechnology Letters, 2004, 26: 1739-1744.
  • 10Yun H, Yang YH, Cho BK, et al. Simultaneous synthesis of enantiomerically pure (R)-1-phenylethanol and (R)-α- methylbenzylamine from racemic a-methylbenzylamine using ε- transaminase/ alcohol dehydrogenase/glucose dehydrognease coupling reaction [J]. Biontechnology Letters, 2003, 25: 809-814.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部