期刊文献+

合成生物系统的组合优化 被引量:2

Combinatorial optimization of synthetic biological systems
原文传递
导出
摘要 合成生物学所面临的一项重要挑战是构建具有全新功能的生物系统。由于生物系统固有的复杂性,仅通过理性设计,通常难以使合成基因线路发挥出最优的功能。组合工程的兴起和发展为获得组合优化性状提供了有利条件,并大大促进了具有全新功能的生物系统的构建。文中主要从单个元件的微调、代谢通路的优化以及基因组范围内靶点的识别和组合修饰三个方面入手,总结和评述了近些年表现突出的合成生物系统的组合优化方法。 A major challenge in synthetic biology is to engineer complex biological systems with novel functions.Due to the inherent complexity of biological systems,it is often difficult to rationally design every component in a synthetic gene network to achive an optimal performance.Combinatorial engineering is an important solution to this problem and can greatly facilitate the construction of novel biological functions.Here,we review methods and techniques developed in recent years for combinatorial optimization of synthetic biological systems,including methods for fine-tuning pathway components,strategies for systematically optimization of metabolic pathways,and techniques for introducing multiplex genome wide perturbations.
出处 《生物工程学报》 CAS CSCD 北大核心 2013年第8期1064-1074,共11页 Chinese Journal of Biotechnology
基金 国家重点基础研究发展计划(973计划)(Nos.2011CBA00804 2012CB725203) 国家自然科学基金(Nos.21176182 21206112) 国家高技术研究发展计划(863计划)(Nos.2012AA023102B 2012AA022103B) 天津市自然科学基金(No.12JCYBJC12900) 高等学校博士学科点专项科研基金(No.20100032120014)资助~~
关键词 合成生物学 组合工程 合成启动子文库 多元模块工程 组合转录工程优化法 可追踪多元重组工程 全转录工程 多元自动化基因组工程 synthetic biology combinatorial engineering synthetic promoter libraries multiple module engineering COMPACTER global transcription machinery engineering trackable multiplex recombineering multiplex automated genome engineering
  • 相关文献

参考文献39

  • 1Endy D. Foundations for engineering biology. Nature, 2005, 438(7067): 449-453.
  • 2Khalil AS, Collins JJ. Synthetic biology: applications come of age. Nat Rev Genetics, 2010, 11(5): 367-379.
  • 3Prather KL, Martin CH. De novo biosynthetic pathways: rational design of microbial chemical factories. Curr Opin Biotechnol, 2008, 19(5): 468-474.
  • 4Stephanopoulos G, Alper H, Moxley J. Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol, 2004, 22(10): 1261-1267.
  • 5Tyo KE, Alper HS, Stephanopoulos GN. Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol, 2007, 25(3): 132-137.
  • 6Santos CN, Stephanopoulos G. Combinatorial engineering of microbes for optimizing cellular phenotype. Curr Opin Chem Biol, 2008, 12(2): 168-176.
  • 7Voigt CA. Genetic parts to program bacteria. Curr Opin Biotechnol, 2006, 17(5): 548-557.
  • 8Jones KL, Kim SW, Keasling JD. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab Eng, 2000, 2(4): 328-338.
  • 9Alper H, Fischer C, Nevoigt E, et al. Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA, 2005, 102(36): 12678-12683.
  • 10Ellis T, Wang X, Collins JJ. Diversity-based,model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol, 2009, 27(5): 465-471.

同被引文献50

  • 1刘晓,王慧媛,熊燕,赵国屏,王金.基因合成与基因组编辑[J].中国细胞生物学学报,2019,0(11):2072-2082. 被引量:3
  • 2李敏,杨谦.一种高效构建同源重组DNA片段的方法——融合PCR[J].中国生物工程杂志,2007,27(8):53-58. 被引量:51
  • 3Khalil AS, Collins JJ. Synthetic biology: applications come of age[J]. Nature Reviews Genetics, 2010, 11(5): 367-379.
  • 4Keasling JD. Synthetic biology for synthetic chemistry[J]. ACS Chemical Biology, 2008, 3(1): 64-76.
  • 5Keasling JD. Synthetic biology and the development of tools for metabolic engineering[J]. Metabolic Engineering, 2012, 14(3): 189-195.
  • 6Young E, Alper H. Synthetic biology: tools to design, build, and optimize cellular processes[J]. Journal of Biomedicine and Biotechnology, 2010, 2010: 130781.
  • 7Mnaimneh S, Davierwala AP, Haynes J, et al. Exploration of essential gene functions via titratable promoter alleles[J]. Cell, 2004, 118(1): 31-44.
  • 8Jensen PR, Hammer K. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters[J]. Applied and Environmental Microbiology, 1998, 64(1): 82-87.
  • 9Siegl T, Tokovenko B, Myronovskyi M, et al. Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes[J]. Metabolic Engineering, 2013, 19: 98-106.
  • 10de Mey M, Maertens J, Lequeux GJ, et al. Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering[J]. BMC Biotechnology, 2007, 7: 34.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部