期刊文献+

复杂天然产物合成人工生物系统的设计与构建 被引量:1

Design and construction of artificial biological systems for complex natural products biosynthesis
原文传递
导出
摘要 天然产物是人类疾病预防和治疗药物的最重要来源。合成生物学技术的蓬勃发展为天然产物的开发注入了全新的活力。文中重点介绍了如何利用合成生物技术进行复杂天然产物合成人工生物系统的设计与构建,包括与此相关的生物元件理性设计、生物元件挖掘、途径装配与集成,模块的组装与系统的适配等内容。 Natural products(NPs) are important drug pools for human disease prevention and treatment.The great advances in synthetic biology have greatly revolutionized the strategies of NPs development and production.This review entitled with design and construction of artificial biological systems for complex NPs biosynthesis,mainly introduced the progresses in artificial design of synthetic biological parts,naturally mining novel synthetic parts of NPs,the assembly & adaption of the artificial biological modules & systems.
出处 《生物工程学报》 CAS CSCD 北大核心 2013年第8期1146-1160,共15页 Chinese Journal of Biotechnology
基金 国家重点基础研究发展计划(973计划)(No.2012CB721104) 国家自然科学基金(Nos.31170101 31100073) 中国科学院知识创新工程重大项目(No.KSCX2-EW-J-12)资助~~
关键词 合成生物学 人工生物系统 天然产物 synthetic biology artificial biological systems natural products
  • 相关文献

参考文献56

  • 1Wang JF, Xiong ZQ, Meng HL, et al. Synthetic biology triggers new era of antibiotics development. Subcell Biochem, 2012, 64:95-114.
  • 2Mitchell W. Natural products from synthetic biology. Curt Opin Chem Biol, 2011, 15(4): 505-515.
  • 3卢志国,汪建峰,蒙海林,熊智强,王勇.合成生物学与天然产物开发[J].生命科学,2011,23(9):900-911. 被引量:6
  • 4Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496: 528-532.
  • 5Pumick PE, Weiss R. The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol, 2009, 10(6): 410-422.
  • 6Canton B, Labno A, Endy D. Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol, 2008, 26(7): 787-793.
  • 7Ham TS, Dmytriv Z, Plahar H, et al. Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools. Nucleic Acids Res, 2012, 40(18): e141.
  • 8Xiong ZQ, Wang JF, Hao YY, et al. Recent advances in the discovery and development of marine microbial natural products. Mar Drugs, 2013, 11(3): 700-717.
  • 9De Mey M, Maertens J, Lequeux G, et al. Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering. BMC Biotechnol, 2007, 7(1): 34.
  • 10De Mey M, Maertens J, Boogmans S, et al. Promoter knock-in: a novel rational method for the fine tuning of genes. BMC Biotechnol, 2010, 10(1): 26.

二级参考文献135

  • 1Kim TY, Sohn SB, Kim HU. Strategies for systems-level metabolic engineering. Biotechnol J, 2008, 3: 612-623.
  • 2Otero JM, Nielsen J. Industrial systems biology. Biotech Bioeng, 2010, 105: 439-447.
  • 3Bro C, Regenberg B, Forster J, et al. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng, 2006, 8: 102-111.
  • 4Bengtsson O, Jeppsson M, Sonderegger M, et al. Identification of common traits in improved xylosegrowing Saecharomyces cerevisiae for inverse metabolic engineering. Yeast, 2008, 25: 835-847.
  • 5Karhumaa K, Pahlman AK, Hahn-Hagerdal B, et al. Proteome analysis of the xylose-fermenting mutant yeast strain TMB 3400. Yeast, 2009, 26: 371-382.
  • 6Argueso JL, Carazzolle MF, Mieczkowski PA, et al. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res, 2009, 19: 2258-2270.
  • 7Fischer CR, Klein-Marcuschamer D, Stephanopoulos G. Selection and optimization of microbial hosts for biofuels production. Metab Eng, 2008, 10: 295-304.
  • 8Nicolaou SA, Gaida SM, Papoutsakis ET. A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng, 2010, 12: 307-331.
  • 9Zhao XQ, Bai FW. Mechanism of yeast ethanol tolerance and its manipulation for efficient fuel ethanolproduction. JBiotechnol, 2009, 27: 849-856.
  • 10Mao S, Luo Y, Zhang T, et al. Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. J Proteome Res, 2010, 9: 3046-3061.

共引文献21

同被引文献15

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部