期刊文献+

基于Gaussian核密度法的作物保险差别化费率厘定实证——以辽宁省大连市玉米保险为例 被引量:2

下载PDF
导出
摘要 研究结论表明,非参数核密度厘定风险费率比参数法更具有效性,用Gaussian核密度估计厘定出的大连市玉米保险70%-90%五个保障水平下的纯费率区间为2%-6%,而现行保险费率可能偏高。在此基础上,提出将现行大田作物保险费率厘定范围缩小可能得到更加精确的差别化风险费率厘定结果。
作者 于洋
出处 《金融理论与实践》 CSSCI 北大核心 2013年第9期98-100,共3页 Financial Theory and Practice
基金 美国农业部国际合作项目(No.53-3151-2-00017) 国家教育部人文社会科学青年基金项目(11YJC630267) 辽宁省教育厅人文社会科学研究一般项目(W2011151) 辽宁对外经贸学院博士启动基金项目(013XJLXBSJJ007)
  • 相关文献

参考文献4

二级参考文献17

  • 1宁满秀,邢郦,钟甫宁.影响农户购买农业保险决策因素的实证分析——以新疆玛纳斯河流域为例[J].农业经济问题,2005,26(6):38-44. 被引量:148
  • 2宁满秀,苗齐,邢鹂,钟甫宁.农户对农业保险支付意愿的实证分析——以新疆玛纳斯河流域为例[J].中国农村经济,2006(6):43-51. 被引量:102
  • 3王丽红,杨华,田志宏,闫仲勇.非参数核密度法厘定玉米区域产量保险费率研究——以河北安国市为例[J].中国农业大学学报,2007,12(1):90-94. 被引量:59
  • 4Alan P. K. and Barry K. G. Nonparametric Estimation of Crop Insurance Rates Revisited [ J ]. American Journal of Agricultural Economics ,2000, ( 83 ) :463 - 478.
  • 5Bruce J. Sherrick. Crop Insurance Valuation Under Ahemative Yield Distributions [ J ]. American Journal of Agricultural Economics ,200g, ( 86 ) :406 - 419.
  • 6Turvey C G, Zhao C. Parametric and Nonparametric Crop Yield Distributions and Their Effects on All-Risk Crop Insurance Premiums [D]. Guelph: University of Guelph, 1993.
  • 7Zanini F C, Sherrick B J, Schnitkey G D, et al. Crop Insurance Valuation under Alternative yield Distributions [J]. American Journal of Agricultural Economics, 2004, 86(2): 406-419.
  • 8Goodwin B K, Ker A P. Nonparametric Estimation of Crop Yield Distributions: Implications for Rating Group-Risk Crop Insurance Contracts [J]. American Journal of Agricultural Economics, 1998, 80: 139-153.
  • 9Ker A P, Goodwin B K. Nonparametric Estimation of Crop Insurance Rates Revisited [J]. American Journal of Agricultural Economics, 2000, 83: 463-478.
  • 10邢郦.中国种植业生产风险与政策性农业保险研究[D].南京:南京农业大学,2004.

共引文献52

同被引文献31

  • 1Goodwin B K.Premium Rate Determination in the Federal Crop Insurance Program:What Do Average Have to Say about Risk[J].Journal of Agricultural and Resource Economics,1994,(20):382-395.
  • 2Bruce J.Sherrick.Crop Insurance Valuation under Alternative Yield Distribution[J].American Journal of Agricultural Economics,2004,(86):406-419.
  • 3张艳.政策性农业保险巨灾风险评估及其准备金测算:基于云南1949-2008年的农业损失数据[A].2012中国保险与风险管理国际年会论文集[C] ,2012.
  • 4Ashenbrenner, C. X. ,2010,“Crop Insurance Reserving,” in Casualty Actuarial Society E - Forum, pp.1 -38.
  • 5Cleary,K. A. and Boutchee,J. P.,2002,“Reserving for Catastrophes,” The 2002 CAS Reserves DiscussionPapers,pp. 25.
  • 6Chen,S. L.,2004,“Miranda M J. Modeling multivariate crop yield densities with frequent extreme events,”in Selected paper presented at AAEA meeting.
  • 7Hill,B. M.,1975,“ A simple general approach to inference about the tail of a distribution,” Annals of Statis-tics, 13 ,pp. 331 -341.
  • 8Ker,A. P. and Keith,C. ,2003," Modeling conditional yield densities," American Journal of Agricultural E-conomics, 85 (2 ) ,pp. 291 - 304.
  • 9Ker, A. P. , Goodwin B K.,2000,“Nonparametric estimation of crop insurance rates revisited,” AmericanJournal of Agricultural Economics ,82(2),pp. 463 -478.
  • 10Lawas,C. P. ,2005 , “ Crop insurance premium rate impacts of flexible parametric yield distributions : An eval-uation of the Johnson family of distributions”.

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部