期刊文献+

MEMS陀螺仪结构模型及系统仿真 被引量:18

Structure model and system simulation of MEMS gyroscope
下载PDF
导出
摘要 为了减小MEMS陀螺仪的正交误差,进一步提高陀螺精度,在Simulink环境中对陀螺结构和测控系统进行了建模和仿真。首先在理想状态的陀螺结构模型基础上建立了包含机械热噪声、模态间耦合等非理想因素的结构模型,并给出了陀螺结构的相关设计参数。其次在陀螺结构模型上以自激振荡和AGC控制技术为基础设计了驱动回路,该回路可在短时间内将驱动幅度稳定在10μm,且驱动频率为4048 Hz(驱动模态的谐振频率)。然后分析了模态间耦合信号的作用方式并建立了正交校正和检测闭环力反馈回路,仿真结果显示,在全闭环状态下检测模态所受耦合力的幅度比未校正状态下降了5个数量级,等效输入角速度也从205(°)/s下降到了6.58(°)/h。最后对陀螺模型进行了整体测试,得到其标度因数和阈值分别为21.76 mV/(°)/s和0.002(°)/s。 The model of micro-electro-mechanical system (MEMS) gyroscope structure and monitor circuit is investigated and simulated in Simulink in order to decrease the quadrature error and enhance the gyroscope's precision. Firstly, the model is established based on the ideal gyroscope's model and some imperfect elements, such as the mechanical thermal noise, coupling signal between two modes, and then the parameters are proposed. After that, the close loop drive system is designed based on self-resonant and AGC technology, the amplitude and frequency of drive frame are stabilized at 10 μm and 4048 Hz (drive mode's resonant frequency) respectively within one second. Then, the quadrature error correction and sense force feedback rebalance loops are built. The simulation result indicates that, after correction, the coupling force's amplitude is decreased by 105 times, and its equivalent input angular rate is reduced from 205 (°)/s to 6.58 (°)/h. Finally, the overall test is made which shows that the scale factor and the threshold value are 21.76 mV/(°)/s and 0.002 (°)/s.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2013年第4期524-529,共6页 Journal of Chinese Inertial Technology
基金 国家自然科学基金(60974116 61101021 61104217) 江苏省自然科学基金(BK2010401)
关键词 MEMS陀螺仪 结构模型 SIMULINK 系统仿真 MEMS gyroscope structure model Simulink system simulation
  • 相关文献

参考文献13

  • 1夏敦柱,周百令,王寿荣.实时小波滤波方法在硅微陀螺仪中的应用研究[J].中国惯性技术学报,2007,15(1):92-95. 被引量:9
  • 2Erdinc T, Said E A, Tayfun A. Quadrature-error compen- sation and corresponding effects on the performance of fully decoupled MEMS gyroscopes[J]. Journal of Micro- electromechanical Systems, 2012, 21(3): 656-667.
  • 3Sonmezoglu S, Alper S E, Akin T. An automatically mode-matched MEMS gyroscope with 50Hz band width [C]//IEEE 25th International Conference on Micro Electro Mechanical Systems(MEMS). Paris, France, 2012: 523- 526.
  • 4温佰仟,刘建业,李荣冰.MEMS陀螺正交误差分析与仿真[J].传感器与微系统,2008,27(9):82-84. 被引量:8
  • 5张霞,郑旭东,王昊,金仲和.微机械陀螺的建模与仿真[J].浙江大学学报(工学版),2009,43(4):646-650. 被引量:3
  • 6温佰仟,刘建业,李荣冰.MEMS硅微陀螺仪系统级建模与仿真研究[J].中国惯性技术学报,2007,15(4):485-487. 被引量:7
  • 7殷勇,王寿荣,王存超,杨波,盛平,田忠.一种双质量硅微陀螺仪[J].中国惯性技术学报,2008,16(6):703-706. 被引量:7
  • 8Cao Huiliang, Li Hongsheng. Investigation of a vacuum packaged MEMS gyroscope architecture's temperature robustness[J]. International Journal of Applied Electrom- agnetics and Mechanics, 2013 (41): 495-506.
  • 9Yang Bo, Wang Shourong, Li Hongsheng, et al. Mechanical-thermal noise in drive-mode of a silicon micro-gyroscope[J]. Sensors, 2009(9): 3357-3375.
  • 10Saukoski M, Aaltonen L, Halonen K A I. Zero-rate output and quadrature compensation in vibratory MEMS gyroscope [J]. IEEE Sensors Journal, 2007, 7(12): 1639-1652.

二级参考文献32

共引文献37

同被引文献102

引证文献18

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部