摘要
考虑一类时滞脉冲随机Cohen-Grossberg神经网络p阶矩指数稳定。通过构造适当的Lyapunov泛函,利用Halanay和Hardy不等式,建立了一类时滞脉冲随机Cohen-Grossberg神经网络p阶矩指数稳定的判据。该判据改进和推广了先前文献的一些结果。
In this paper, pth moment exponential stability is considered for a class of impulsive stochastic Cohen-Grossberg neural networks with mixed time delays. By employing suitable Lyapunov functionals, applying well-known Halanay and Hardy inequalities, sufficient conditions ofpth moment exponential stability have been established for Cohen-Grossberg neural networks with mixed time de- lays. The derived criteria extend and improve previous results in the literature.
出处
《咸阳师范学院学报》
2013年第4期1-5,121,共5页
Journal of Xianyang Normal University
基金
陕西省教育厅自然科学基金项目(2013JK0578)
咸阳师范学院博士引进项目(12XSYK008)
关键词
神经网络
混合时滞
脉冲随机
p阶矩指数稳定
LYAPUNOV泛函
neural networks
mixed time delays
impulsive stochastic
pth moment exponential stability
Lyapunov functional