期刊文献+

基于内容的个性化新闻推荐 被引量:3

Personalized News Recommendation Based on Content
下载PDF
导出
摘要 不同的用户有不同的兴趣指向,个性化推荐的核心在于如何提高推荐命中率.以新闻文档内容特征为基础,用ICTCLAS完成分词和频数统计,建立基于内容的新闻文档模型和动态的用户兴趣模型,实现新闻文档的比较、分类和个性化推荐,并用SSHA框架技术对系统进行设计. Different users have different interest orientation and the core of the. personalized recommendation is how to improve the hit rate of recommendation. Use ICTCLAS to separate words and do frequency statistics based on the characteristics of the news document content. Establish News Document Model based on the content and dynamic User Interest Model. Realize the news document comparison, classification, and personalized recommendation. Design a personalized news recommendation system with SSHA framework technology.
出处 《四川文理学院学报》 2013年第5期57-60,共4页 Sichuan University of Arts and Science Journal
基金 国家自然科学基金项目"基于情感语义的全局均衡智能推荐理论与应用研究"(61152003) 四川省教育厅青年基金项目"基于Qos的服务模型与方法研究"(10ZB085)
关键词 个性化推荐 用户兴趣模型 SSHA personalized recommendation user interest model(UIM) SSHA
  • 相关文献

参考文献6

  • 1Goldberg D, Nichols D, Oki B ,et al. Using Collaborative Filtering to Weave an Information Tapestry[ J ]. Communications of the ACM,1992(12) :61270.
  • 2柏林森,苏萌.百分点个性化推荐引擎[EB/OL].http://baike.baidu.com/view/4362864.htm,2013102119.
  • 3Lieberman H, Dyke N V, Vivacqua A. Let's Browse :Acollaborative Web Browsing Agent [ J ]. International Conference on In- telligent User Interfaces, Los Angeles:ACM Press,1999:315.
  • 4Bamshad Mobasher, Robert Cooley, Jaideep Srivastava. Automatic Personalization Based on Web Usage Mining [J]. Communications of the ACM,2000 ( 8 ) : 142 - 151.
  • 5Salton G, McGill M J. Introduction to Modern Information Retrieval[ J ]. NewYork : McGraw Hill, 1983 : 147.
  • 6蒲国林,杨清平,王刚,邱玉辉.基于语义的个性化用户兴趣模型[J].计算机科学,2008,35(7):181-184. 被引量:11

二级参考文献6

  • 1Silverstein C, Henzinger M, Marais H, et al. Analysis of a very large AhaVista querylog. Tech. rep. 1998-014.
  • 2Jurafsky D,Martin J H.自然语言处理综论.冯志伟,等译.北京:电子工业出版社,2005(6):403-406.
  • 3Salton G, McC-ill M J. Introduction to Modern Information Retrieval. McGraw-Hill, New York, 1983.
  • 4Salton G, Buckley C. Term Weighting Approaches in Automatic Text Retrieval. Information Processing and Mangement, 1988, 24(5):513- 523.
  • 5Luhn H P. A statistical approach to the mechanized encoding and searching of literary information. IBM Journal of Research and Development, 1957,1(4) :309-317.
  • 6Sparck J K. A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation, 1972,28 (1) : 11-21.

共引文献10

同被引文献15

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部