期刊文献+

基于线性矩系数图的日降雨量年最大值系列频率分布选型

Selecting a Probability Distribution for Annual Maximum Series of Daily Rainfall Based on L-moment Ratio Diagram
下载PDF
导出
摘要 为提高对暴雨数据的预测精度,探讨城市暴雨频率分布选型,考察线性矩系数图作为城市暴雨分布直观判断工具的可行。以南京市58年日降雨量年最大值系列为例,采用线性矩系数图方法,并配合L-kurtosis的偏差以及K-S检验法,分析5种常的3参数分布函数(即GEV、GLO、LN3、GPA和PE3)的拟合情况,得到计算结果,并绘制线性矩系数图。根据线性矩系数图观判断,皮尔逊III型分布(PE3)拟合最佳,3参数对数正态分布(LN3)次之,该结果与L-kurtosis的偏差和K-S检验法保持很的一致性。结果表明,线性矩系数图作为一种判断工具,应用在国内城市暴雨频率分布选型上有其可行性。 To improve the estimation accuracy of rainfall, the distribution of annual maximum series of daily rainfall based on L-moment ratio diagram was investigated. Selecting 58 years rainfall data of Nanjing as an example, the L-moment ratio diagram was plot due to it is useful for goodness of fit applications. L-kurtosis difference and Kolmogorov-Smirnov tests were used in 5 distribution functions, GEV, GLO, LN3, GPA, and PE3. These fitting curves were plot in the L-moment ratio diagram. The results show that the PE3 distribution is the best fit for the sample data as judged by the L-moment ratio diagram, second is the LN3 distribution. This agrees with the results of L-kurtosis difference and Kolmogorov-Smirnov tests. The L-moment ratio diagram is an attractive tool for distribution fitting.
出处 《安徽工业大学学报(自然科学版)》 CAS 2013年第3期318-321,共4页 Journal of Anhui University of Technology(Natural Science)
基金 国家自然科学基金资助项目(51208001) 安徽高校省级自然科学研究项目(KJ2012Z029)
关键词 频率分析 年最大值系列 线性矩系数图 皮尔逊III型分布 frequency analysis annual maximum series L-moment ratio diagram probability distribution Pearson type III distribution
  • 相关文献

参考文献16

二级参考文献46

  • 1李松仕.概率权矩法推求P-Ⅲ型分布参数新公式[J].水利学报,1989,21(5):39-42. 被引量:9
  • 2杨荣富,丁晶,邓育仁.概率权重矩法估计P-Ⅲ型分布参数用表的近似表达式[J].水文,1994,13(3):17-20. 被引量:6
  • 3冯国章,王双银.河流枯水流量特征研究[J].自然资源学报,1995,10(2):127-135. 被引量:32
  • 4邓培德.暴雨选样与频率分布模型及其应用[J].给水排水,1996,22(2):5-9. 被引量:70
  • 5Hosking J R M, Wallis J R. Regional Frequency Analysis--an Approach Based on L-moments [M]. London: Cambridge University Press, 1997: 1-128.
  • 6Pandey M.D., Gelder P.H.A.J.M., Vrijling J.K. Assessment of an lkurtosis-based criterion for quantile estimation [J]. Journal of Hydrologic Engineering, 2001, 6: 284-291.
  • 7Greenwood, J. A., J.M.Landwehr, N.C.Matalas, and J.R.Wallis.Probability-weighted moments: Definition and relation to parameters of distribution expressible in inverse form [J]. Water Resources Research,1979, 15(5): 1049-1054.
  • 8Hosking,J.R.M., L-moments: Analysis and estimation of distributions using linear combination of order statistics [J]. J. R. Stat. Soc., Ser. B,1990, 52(2): 105-124.
  • 9Hosking, J. R. M., and J.R.Wallis. Regional Frequency Analysis, An Approach Based on L-moments[M]. Cambridge University Press, 1997.
  • 10Landwehr, J.M., N.C.Matalas, and J.R.Wallis. Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles [J]. Water Resources Research, 1979, 15(5):1055-1064.

共引文献162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部