摘要
数据挖掘技术中的分类和回归树(Classification And Regression Tree,CART)节点是一种基于树的分类预测方法,使用递归分区来将训练记录分割类似的输出字段值。文章将C&R树应用于市场营销研究,目标是寻找意愿接受互动新闻服务并购买的潜在客户。通过使用已有的客户数据作为训练样本,建立了一个分类回归模型,可以用于未来数据的预测,从而有助于企业更好地针对不同类型的客户进行不同的营销策略。
The Classification and Regression Tree node (Classification And Regression Tree,CART) in Data Mining techniques is a tree-based classification and prediction method that uses recursive partitioning to split the training records into segments with similar output field values. In this paper, it is applied to a marketing study which is to find the potential customers having the intentions to buy an online interactive news service. Through using the existing customer data as training samples, a classification and regression model is established, which can be used to predict "future data and help the companies better carry out different marketing strategies for different types of customers.
出处
《大众科技》
2013年第8期160-162,共3页
Popular Science & Technology
基金
安徽省自然科学基金项目(项目号:11040606M140)资助