期刊文献+

超磁致伸缩材料传感/执行器的原理与应用 被引量:8

Principle and Application of Giant Magnetostrictive Sensors and Actuators
下载PDF
导出
摘要 超磁致伸缩材料作为一种新型功能材料,具有大磁致伸缩系数、高能量密度、低磁场驱动、高磁机转换效率以及快速响应等优点,在精密驱动技术中得到应用。利用磁致伸缩正效应可以开发微位移执行器、力驱动器和振动器等;利用磁致伸缩逆效应可以开发力、力矩和位移传感器以及能量转换器;利用磁致伸缩正逆耦合效应可以开发集驱动、力测量、输出力感知和输出力可控等功能于一体的器件,应用于精密驱动领域。在分析了磁致伸缩正效应、逆效应以及正逆耦合效应机理的基础上,阐述了超磁致伸缩传感器、执行器以及传感执行一体化器件的开发原理及其应用现状。 Giant magnetostrictive materials(GMM)as a new type of functional materials have been used in the precise actuator technique,due to their excellent advantages of large magnetostriction,high energy density,low driving magnetic field,high magnetomechanical coupling coefficient and fast response capability.GMM can be used as the core element in many devices.On the one hand,micro displacement actuators,force actuators and vibrators can be developed on the basis of positive magnetostrictive effect;on the other hand,force sensors,torque sensors,displacement sensors and energy converters can be developed on the basis of inverse magnetostrictive effect.Moreover,GMM devices which have driving,force measuring,output force sensing and output force controllable functions can be developed on the basis of coupling effect between positive and inverse magnetostrictive effects,and used in the field of precision driving.The positive magnetostrictive effect,inverse magnetostrictive effect and coupling effect between positive and inverse magnetostrictive effects are analyzed.Based on the analyses,the development principle and application status of giant magnetostrictive sensors,actuators and devices with driving and sensing functions are stated.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2013年第4期539-546,719,共8页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(50775021)
关键词 超磁致伸缩材料 执行器 传感器 正逆耦合效应 giant magnetostrictive materials,actuators,sensors,the coupling effects of positive and inverse magnetostrictive
  • 相关文献

参考文献26

  • 1Miesner J E, Teter J P. Piezoelectric/magnetostrietivc resonant inchworm motor[C]// Proceedings of SPIE Smart Materials. Orlando, FL: [s. n. ], 1994, 2190: 520-527.
  • 2Venkataraman R, Dayawansa W P, Krishnaprasad P S. The hybrid motor prototype: design details and demonstration results [R]. Maryland.. University of Maryland, 1998.
  • 3Clephas B, Janocha H. New linear motor with hybrid actuator[C]// Proceedings of SPIE Smart Structures and Materials. San Diego, CA: [s. n.], 1997, 3041 : 316-325.
  • 4Clephas B, Janocha H. Extended perfomance of hybrid actuators[J]. Applied Mechanics and Engineering, 2000, 5(1): 157-168.
  • 5Uneo T, Keat C S, Higuchi T. based on magnetic force control magnetostrictive and piezoelectric Transactions on Magnetic, 2007, Linear step motor using composite of materials[J]. IEEE 43(1): 11-14.
  • 6Duan Y F, Or S W. Self-sensing tunable vibration absorber incorporating piezoelectric ceramic-magnetos- trictive composite sensoriactuator[J]. Smart Materials and Structures, 2011, 20(085007): 1-8.
  • 7Besbes M, Ren Z, Razek A. Finite element analysis of magneto-mechanical coupled phenomena in magnetos- trietive materials[J]. IEEE Transactions on Magnetics, 1996, 32(3): 1058-1061.
  • 8Gros L, Reyne G, Body C, et al. Strong coupling magneto mechanical applied to model heavy magnetostrictive actuator[J]. IEEE Transactions on Magnetics, 1998, 34(5): 3150-3153.
  • 9Ikeda M, Uemura K, Sasaki I, et al. Factors affecting the ouput voltage of a magnetostrictive torque sensor constructed from Ni-Fe sputtered films and a Ti-Alloy shaft[J]. Journal Magnetics Society of Japan, 1998, 22(6): 1074-1079.
  • 10Garshelis I J. A torque transducer utilizing a circularly polarized ring[J]. IEEE Transactions on Magnetics, 1992, 28(5): 2202-2204.

同被引文献74

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部