期刊文献+

磁流变阻尼器逆向模型的建模、优化与仿真 被引量:9

Modeling,Optimization and Simulation of a Magnetorheological Damper Inverse Model
下载PDF
导出
摘要 在材料特性实验台上对磁流变(magnetorheological,简称MR)阻尼器的阻尼特性进行了测试,识别了BoucWen模型的未知参数。利用BP神经网络技术建立了MR阻尼器非线性逆向模型,并利用遗传算法高效的全局优化能力对MR阻尼器神经网络模型的结构、权值和阈值进行优化。将所建逆向模型应用于铁道车辆的半主动振动控制中进行仿真。分析结果表明,优化后的神经网络模型预测精度和泛化能力均得到显著提升,半主动控制效果明显,验证了该优化方法的有效性。 The damping characteristics of Magnetorheological(MR)dampers is tested on material testing system(MTS),and the unknown parameters of Bouc-Wen model are identified.A nonlinear inverse model of MR dampers is built by using BP neural network technology.In order to improve prediction accuracy and generalization ability of the inverse model,the structure,weights and threshold values of the model are optimized by using genetic algorithm(GA)theories for their rapid local searching ability.The inverse model is applied in the semi-active control system of railway vehicle for simulation analysis.The simulation results show that the prediction accuracy and generalization ability of the inverse model optimized are improved significantly.The vibration is controlled effectively,and the optimization method is valid.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2013年第4期701-705,729-730,共5页 Journal of Vibration,Measurement & Diagnosis
基金 国家重点基础研究发展计划("九七三"计划)资助项目(2012CB723301) 国家自然科学基金资助项目(10932006 11227201 11202141 11172182 11202142 11172184) 铁道部重点资助项目(2011J013-A) 河北省自然科学基金资助项目(A2013210013) 河北省教育厅资助项目(Z2011228)
关键词 磁流变阻尼器 半主动控制 逆向模型 遗传算法 神经网络 magnetorheological damper,semi-active control,inverse model,genetic algorithm(GA),artificial neural network
  • 相关文献

参考文献11

  • 1申永军,杨绍普,刘献栋.采用磁流变阻尼的一种改进型半主动控制汽车悬架研究[J].振动.测试与诊断,2001,21(4):253-257. 被引量:20
  • 2邬喆华,楼文娟,陈勇,朱瑶宏,唐锦春.磁流变阻尼器对斜拉索半主动控制的最优参数[J].振动.测试与诊断,2006,26(1):41-45. 被引量:6
  • 3于国军,杜成斌,万发学.高耗能自解耦式MR阻尼器的设计及性能试验[J].振动.测试与诊断,2012,32(3):426-431. 被引量:4
  • 4Spencer B F, Dyke S J, Sain M K, et al. Phenomenological model of a magnetorheological damper [J]. Journal of Engineering Mechanics, 1997,123(3) : 230- 238.
  • 5Zapateiro M, Luo N, Karimi H R, et al. Vibration control of a class of semiactive suspension system u- sing neural network and backstepping techniques[J]. Mechanical System and Signal Processing, 2009, 23 (6) : 1946-1953.
  • 6刘永强,杨绍普,廖英英,张耕宁.基于遗传算法的磁流变阻尼器Bouc-Wen模型参数辨识[J].振动与冲击,2011,30(7):261-265. 被引量:41
  • 7Guo Dalei, Hu Haiyan, Yi Jianqiang. Neural network control for a semi-active vehicle suspension with a magnetorheological damper [J]. Journal of Vibration and Control, 2004,10(3):461-471.
  • 8Atray V S, Roschke P N. Neuro-fuzzy control of railcar vibrations using semiactive dampers[-J-. Comput- er-Aided Civil and Infrastructure Engineering, 2004, 19:81-92.
  • 9Gamota D R, Filisko F E. Dynamic mechanical studies of electorheological materials: moderate frequencies [J]. Journal of Rheology, 1991(35):399-425.
  • 10Choi S B, Lee S K. A hysteresis model for the field- dependent damping force of a magnetorheological damper[J]. Journal of Sound and Vibration, 2001,245 (2) :375-383.

二级参考文献54

共引文献69

同被引文献60

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部