期刊文献+

性能和复杂程度折中的LDPC码译码算法

A Compromise LDPC Code Decoding Algorithm between Performance and Complexity
下载PDF
导出
摘要 在IEEE802.16e通信标准的LDPC码背景下,基于LDPC码的软判决LLR BP译码算法,结合LDPC码的最小和处理方式和硬判决译码思想,针对译码性能和复杂程度提出了一种改进的BP译码算法。在相同信噪比条件下,新BP算法在译码性能上非常接近LLR BP算法,同时其复杂程度却远小于LLR BP算法,提高了工程可实现性。 This paper is according to the IEEE802.16e communication standard of LDPC codes, based on soft decision decoding algorithm of LDPC codes as LLP, BP. Aslo combined with the minimum of LDPC codes and hard decision decoding,an improved BP decoding algorithm is proposed. Under the same condition of SNR, the new BP algorithm's decoding performance is very close to the LLR. BP algorithm's, and its complexity is lower. And the new BP algorithm improves the realizabilitv of project.
出处 《电脑与信息技术》 2013年第4期25-28,共4页 Computer and Information Technology
关键词 LDPC码 BP译码算法 尺度因子 LDPC code BP decoding algorithm Scale factor
  • 相关文献

参考文献5

  • 1IEEE Std 802.16eTM-2005 and IEEE Std 802.16TM_2004/Corl-2005[S].
  • 2吴湛击,傅婷婷,王文博.LDPC码的高效译码算法研究[J].系统工程与电子技术,2010,32(3):603-608. 被引量:9
  • 3C.E.Shannon.A Mathematical Theory of Communication[J].Bell Syst.Tech.J.(Partl):379-423; (Part2):623-656,July 1948.
  • 4CHRISTIANE MAJA BEUSCHEL AUS WANGEN IM ALLG"AU.Fully Programmable LDPC Decoder Hardware Architectures[D].ulm university PhD dissertation,2010.
  • 5Yun Chen.Xiang Chen.Yifei Zhao.Chunhui Zhou.Jing Wang.Design and Inplementation of multi-mode QC-LDPC decoder[C].IEEE International Conference on Communication Technology fICCT).1 1-14 NOV 2010·114S-1148.

二级参考文献26

  • 1Gallager R G. Low density parity check codes[D]. Cambridge: MIT, 1962.
  • 2MacKay D J C, Neal R M. Near shannon limit performance of low density parity check codes[J]. Electronics Letters, 1996, 32(18) ,1645 - 1646.
  • 3Davey M C. Error-correction using Low-Density Parity-Check Code[D]. Cambridge:Gonville and Caius College, 1999.
  • 4Davey M C, MacKay D J C. Low density parity check codes over GF(q) [C] // Proc. of the IEEE Information Theory Work shop, 1998:70-71.
  • 5Chung SaeYoun. On the construction of some capacity approaching coding schemes [D]. Cambridge: MIT, 2000.
  • 6Luby M, Mitzenmacher M, Shokrollahi M A. Practical lossresilient codes[C] // Proc. of 29th Annual ACM Symposium on Theory of Computing, 1997 : 150 - 159.
  • 7Luby M, Mitzenmaeher M, Shokrollahi M A. Analysis of random processes via and-or tree evaluation [C]//Proc. of 9th Annual ACM-SIAM Symposium on Discrete Algorithms, 1998: 364 -373.
  • 8Forney G D. The forward-backward algorithm[C] // Proc. of 34th Allerton Conference Communications, Control and Computing, 1996:432-446.
  • 9Kschischang F R, Frey B J. Iterative decoding of compound codes by probability propagation in graphical models[J]. IEEE Journal on Selected Areas in Communications, 1998,16(2):219 - 230.
  • 10Luby M G, Mitzenmacher M M, Shokrollahi A. Improved lowdensity parity-cheek codes using irregular graphs [J]. IEEE Trans. on Information Theory, 2001,47(2) :585 - 598.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部