期刊文献+

米曲霉木糖还原酶基因的克隆及序列分析

Cloning and Sequence Analysis of Xylose Reductase Gene from Aspergillus oryzae
下载PDF
导出
摘要 木糖还原酶(XR,EC 1.1.1.21)是真菌微生物代谢木糖的关键酶之一。本文以米曲霉基因组DNA为模板,克隆木糖还原酶基因(xr,GenBank登录号:FJ957890.1),并对XR的序列、系统进化树、理化性质及蛋白结构等进行生物信息学分析。结果表明:xr基因序列长1449 bp,其中开放阅读框长960 bp,编码319个氨基酸,蛋白质分子质量35.9 kDa,等电点为5.78;米曲霉XR与其他菌种XR有较高的同一性,含有醛酮还原酶家族的两个指纹结构和一个参与辅酶结合活性位点指纹结构,以及醛酮还原酶家族典型的(β/α)8TIM桶结构,说明米曲霉XR属于醛酮还原酶家族。 Xylose reductase (XR, EC 1.1.1.21) is one of the key enzymes of xylose metabolism for the eukaryotic microorganism. The XR gene (xr) from AspergiUus oryzae was amplified by PCR and cloned (GenBank accession number: FJ957890.1). Then the similarity of amino acid sequences, phylogenetic trees, physic-chemical property and protein structure were analyzed bioinformatically. Sequence analysis reveals that the length ofxr is 1449 bp, which contains 960 bp open reading frame encoding 319 amino acids. A. oryzae XR has high sequence identity with other strain XR. The presence of two aldo-keto reductase family signatures, a putative coenzyme-binding active site signature and a typical parallel beta-8/alpha-8-barrel tertiary structure suggests that XR is a member of aldo-keto reductase superfamily. The obtained information lays the basis for the expression of XR and further research on xylose metabolic regulation and widely industrial application ofA. oryzae.
出处 《亚热带植物科学》 2013年第3期187-192,共6页 Subtropical Plant Science
基金 中央高校基本科研业务费专项资金(JB-ZR1112) 华侨大学科研基金(12BS132)
关键词 米曲霉 木糖还原酶 克隆 序列分析 Aspergillus oryzae xylose reductase cloning sequence analysis
  • 相关文献

参考文献25

  • 1陈宏文,苟元波,张卡,方柏山.米曲霉木糖醇脱氢酶的分子模建与对接[J].微生物学报,2011,51(7):948-955. 被引量:3
  • 2Matsushika A, Sawayama S. Efficient bioethanol production from xylose by recombinant saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity[J]. Journal of Bioscience and Bioengineering, 2008,106(3): 306-309.
  • 3Zeng Q K, Du H L, Wang J F, et al. Reversal of coenzyme specificity and improvement of catalytic efficiency of Pichia stipitis xylose reductase by rational site-directed mutagenesis[J]. Biotechnology Letters, 2009,31(7): 1025-1029.
  • 4Xiong M, Chen Barford J. Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations[J]. Bioresource Technology, 2011,102(19): 9206-9215.
  • 5LeeS H, Kodaki T, Park Y C, et al. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae[J]. Journal of Biotechnology, 2012,158(4): 184-191.
  • 6Zhang F, Qiao D, Xu H, et al. Cloning, expression, and characterization of xylose reductase with higher activity from Candida tropicalis[J]. Journal of Microbiology, 2009,47(3): 351-357.
  • 7Tamburini E, Bianchini E, Bruni A, et al. Cosubstrate effect on xylose reductase and xylitol dehydrogenase activity levels, and its consequence on xylitol production by Candida tropicalis[J]. Enzyme and Microbial Technology, 2010,46(5): 352-359.
  • 8Jeon W Y, Yoon B H, Ko B S, et al. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis[J]. Bioprocess and Biosystems Engineering, 2012,35(1-2): 191-198.
  • 9Chung Y S, Kim M D, Lee W J, et al. Stable expression of xylose reductase gene enhances xylitol production in recombinant Saccharomyces cerevisiae[J]. Enzyme and Microbial Technology, 2002,30(6): 809-816.
  • 10Sasaki M, Jojima T, Inui M, et al. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation[J]. Applied Biochemistry and Microbiology, 2010,86(4): 1057-1066.

二级参考文献32

  • 1李娟,杨金奎,梁连铭,张克勤.丝状真菌遗传转化系统研究进展[J].江西农业大学学报,2006,28(4):516-520. 被引量:17
  • 2Karhumaa K, Fromanger R, Hahn-Hagerdal B, Gorwa- Grauslnnd MF. High activity of xylose rcductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Applied Microbiology Biotechnology, 2007, 73 : 1039-1046.
  • 3Zhang J, Tian S, Zhang Y, Yang X. Construction of a recombinant S. cerevisiae expressing a fusion protein and study on the effect of converting xylose and glucose to ethanol. Applied Biochemistry Biotechnology, 2008, 150 : 185-192.
  • 4Krahulec S, Khmacek M, Nidetzky B. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Biotechnology Journal, 2009, 4 (5) : 684-94.
  • 5Watanabe S, Kodaki T, Makino K. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. The Journal of Biological Chemistry, 2005, 280(11) : 10340-10349.
  • 6Ehrensberger AH, Elling RA, Wilson DK. Structureguided engineering of xylitol dehydrogenase cosubstrate specificity. Structure, 2006, 14: 567-575.
  • 7Ko BS, Kim J, Kim JH. Production of xylitiol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida troicalis. Applied Environment Microbiology, 2006, 72(6) : 4207-4213.
  • 8Lima LHA, Pinheiro CGD, de Moraes LMP, de Freitas SM, Torres FAG. Xylitol dehydrogenase from Candida tropicalis: molecular cloning of the gene and structural analysis of the protein. Applied Microbiology Biotechnology, 2006, 73(3): 631-639.
  • 9Tiwari MK, Moon HJ, Jeya M, Lee JK. Cloning and characterization of a thermostable xylitol dehydrogenase from Rhizobium etli CFN42. Applied Microbiology Biotechnology, 2010, 87 (2) : 571-581.
  • 10Biswas D, Datt M, Ganesan K, Mondal AK. Cloning and characterization of thermotolerant xylitol dehydrogenases from yeast Pichia angusta. Applied Microbiology Biotechnology, 2010, 88(6): 1311-1320.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部