摘要
文章对向量组的线性相关概念、欧氏空间中的正交变换概念、线性方程组的通解与其导出组的通解之间的关系、Cramer法则四类高等代数问题的几何意义进行了教学探索,从几何角度解释了相应的代数问题,使学生更容易理解和接受相关的基本内容.
This paper integrates higher algebra and geometric knowledge, which explains the meaning of linear correlation of vector groups, the orthogonal transformation of Euclidean space, the relationship between the general solution of linear equations and it's derived one as well as Cramer's Rule from geometric angle, makes it easier for students to understand and accept.
出处
《通化师范学院学报》
2013年第8期84-86,共3页
Journal of Tonghua Normal University
基金
陇南师范高等专科学校校级教改项目--高等代数教学中若干难点知识化解方法的研究(JXGG201216)
关键词
线性相关
正交变换
通解
几何意义
linear correlation
orthogonal transformation
general solution
geometric meaning