期刊文献+

图的拟拉普拉斯矩阵前k个最大特征值和的上界

An Upper Bound on the Sum of the k Largest Eigenvalues of the Signless Laplacian Matrix of a Graph
原文传递
导出
摘要 研究了简单连通图的拟拉普拉斯矩阵前k个最大特征值的和,并利用图的度序列和阶数给出了该和的一个上界。 The sum of the k largest eigenvalues of the signless Laplacian matrix of a simple connected graph is studied and an upper bound is obtained in terms of the degree sequence and the order of the graph.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第8期1-4,共4页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金青年基金资助项目(61103073)
关键词 拟拉普拉斯矩阵 特征值 上界 signless Laplacian matrix eigenvalues upper bound
  • 相关文献

参考文献8

  • 1BONDY J A, MURTY U S. Graph theory with applications[M]. London: The Macmillan Press LTD, 1976.
  • 2CARDOSO D M, CVETKOVI'C D, ROWLINSON Peter. A sharp lower bound for the least eigenvalue of the signless Lapla- cian of a non-bipartite graph[ J ]. Linear Algebra and Its Applications, 2008, 429:2770-2780.
  • 3OLIVEIRA C S, LIMA L S, ABREU N M, et al. Bounds on the index of the signless Laplacian of a graphE J]. Discrete Appl Math, 2010, 158:355-360.
  • 4DILEK MADEN A, CH. DAS Kinkar. Sharp upper bounds on the spectral radius of the signless Laplacian matrix of a graph E J]. Applied Mathematics and Computation, 2013, 219:5025-5032.
  • 5LIMA L S, NIKIFOROV V. On the second largest eigenvalue of the signless LaplacianE J]. Linear Algebra and Its Applica- tions, 2013, 438(3):1215-1222.
  • 6EBRAHIMI J, MOHAR B, NIKIFOROV V. On the sum of two largest eigenvalues of a symmetric matrix[ J]. Linear Algebra and Its Applications, 2008, 429(11/12) :2781-2787.
  • 7MOHAR B. On the sum of k largest eigenvalues of graphs and symmetric matrices[J]. J Combin Theory Ser. B, 2008:306- 313.
  • 8靳广清,左连翠.关于图的Laplace谱部分和的上界[J].天津师范大学学报(自然科学版),2012,32(4):6-10. 被引量:1

二级参考文献9

  • 1贺金陵,郭继明.树的拉普拉斯特征值的部分和的可达上界[J].同济大学学报(自然科学版),2006,34(7):970-972. 被引量:2
  • 2汪天飞,李彬.图的最大拉普拉斯特征值的上界[J].四川师范大学学报(自然科学版),2007,30(2):191-193. 被引量:7
  • 3程云鹏.矩阵论[M].2版.西安:西北工业大学出版社,2001:273-275.
  • 4柳伯廉.组合矩阵论[M].北京:科学出版社,1996.
  • 5BONDY J A,MURTY U S.Graph Theory with Applications[M].London:The Macmillan Press LTD,1976.
  • 6EBRAHIMI J,MOHAR B,NIKIFOROV V.On the sum of two largest eigenvalues of a symmetric matrix[J].Linear Algebra and ItsApplications,2008,429(11/12):2781-2787.
  • 7MOHAR B.On the sum of klargest eigenvalues of graphs and symmetric matrices[J].J Combinatorial Theory,2008(B):306-313.
  • 8MERRIS R.Laplacian matrices of graphs:A survey[J].Linear Algebra and Its Application,1991,149:19-34.
  • 9GRONE R,MERRIS R.The Laplacian spectrum of graphⅡ[J].SIAM J Disc Math,1994,7:221-229.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部