期刊文献+

集合Λ上的半格Γ确定的二元关系半群P_Γ(Λ×Λ)的幂等元 被引量:4

Idempotents of semigroup P_Γ(Λ × Λ) of binary relations determined by the semilattice Γ on the set Λ
原文传递
导出
摘要 设Λ是任意的非空集合,Γ是集合Λ上的半格,半群PΓ(Λ×Λ)是由集合Λ上的半格Γ确定的二元关系半群。利用半格的性质,获得了半群PΓ(Λ×Λ)的幂等元性质,并且构造出了一类幂等元,并刻画了它的左单位元。 Let Λ be an arbitrary nonempty set, and Γ be a semilattice on the set Λ, semigroup PΓ(Λ×Λ) is a semigroup of binary relations determined by the semilattice Γ on the set Λ. Use of the nature of the semilattice,characteristics of idempotents of the semigroup PΓ(Λ×Λ) are obtained,and a class of idempotents is constructed; Finally, left units of the semigroup PΓ(Λ×Λ) are characterized.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第8期36-40,共5页 Journal of Shandong University(Natural Science)
基金 中央高校基本科研业务费专项项目(12NZYQN29 12NZYTD21)
关键词 二元关系半群 幂等元 左单位元 semigroup of binary relations idempotents left units
  • 相关文献

参考文献11

二级参考文献44

  • 1PLEMMONS R J, WEST M T. On the semigroup of binary relations[J]. Pacific J Math, 1970, 35: 743-753.
  • 2PLEMMONS R J, SCHEIN B M. Groups of binary relations[J]. Semigroup Forum,1970, 1: 267-271.
  • 3SCHWARZ S. On idempotent binary relations on a finite set[J]. Czech J Math, 1970, 20: 696-702.
  • 4KONIECZNY J. The semigroup generated by regular Boolean matrices[J]. South Asian Bull of Math, 2002, 25: 627-641.
  • 5KONIECZNY J. Green's equivalences in finite semigroups &binary relations[J]. Semigroup Forum, 1994,48: 235-252.
  • 6CHASE K. New semigroups of binary relations[J]. Semigroup Forum, 1979, 18: 79-82.
  • 7CHASE K. Sandwish semigroups of binary relations[J]. Discrete Math, 1979, 28:231-236.
  • 8CHASE K. Maximal groups in sandwish semigroups of binary relations[J]. Pacific J Math, 1982, 100: 43-59.
  • 9KI HANG KIM. Boolean matrix theory and applications[M]. New York: Marcel Dekker, 1982.
  • 10LIN P F, XU B, ZHANG CH J. Some properties of Semigroup Pθ(I × A) of all Binary Relations from a Set I to a Set A [J]. Journal of Guizhou Normal University (Natural Sciences), 2007, 25(3): 72-77.

共引文献7

同被引文献24

  • 1ROBERT JAMES PLEMMONS. On the semigroup of binary relations[J]. Pacific Journal Mathematics, 1970,35:743 -753.
  • 2ROBERT JAMES PLEMMONS, BORIS M. Schein. Groups of binary re- lations [J], Semigreup Forum, 1970,1:267 - 271.
  • 3TEFAN SCHWARZ. On idempotent binary relations on a finite set [J]. Czechoslovak Mathematical Journal, 1970,20:696 - 702.
  • 4KAREN CHASE. New semigreups of binary relations [J]. Semigroup Forum, 1979,18:79 - 82.
  • 5KAREN CHASE. Sandwish semigroups of binary relations[J]. Discrete Math. , 1979,28:231 - 236.
  • 6KAREN CHASE. Maximal groups in sandwish semigroups of binary re- lations [J]. Pacific Journal Mathematics, 1982,100:43 - 59.
  • 7RALPH N, MCKENZIE M, BORIS M. Schein. Every semigreups is iso- morphic to a transitive semigroup of binary relations [J]. Transactions of the American Mathematical Society, 1997,349:271 - 285.
  • 8JANUSZ KONIECZNY. The semigroup generated by regular Boolean matrices [J]. Southeast Asian Bulletin of Mathematics, 2002,25:627 - 641.
  • 9GARRETT BIRKHOFF. Lattice Theory [M]. New York : American Mathematical Society, 1967.
  • 10JOHN MACKINTOSH HOWIE. An Introduction to Semigroup Theory [M]. Landon : Academic press, 1976.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部