期刊文献+

B(X)上ξ-Lie导子的一个刻画 被引量:2

Characterizations of ξ-Lie derivations of B(X)
原文传递
导出
摘要 设X是维数大于1的Banach空间且ξ≠±1。如果对任意的A,B∈B(X)且ABA=A,线性映射φ:B(X)→B(X)满足φ([A,B]ξ)=[φ(A),B]ξ+[A,φ(B)]ξ,则φ是导子。 Let X be a Banach space with dim X〉1, and ξ≠±1. In this paper, we show that if a linear map φ:B(X)→B(X) satisfies φ([A,B]ξ)=[φ(A),B]ξ+[A,φ(B)]ξ for all A,B∈B(X) with ABA=A, then φ is a derivation.
作者 刘丹 张建华
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第8期41-44,共4页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10971123) 教育部高等学校博士学科点专项科研基金(20110202110002)
关键词 BANACH空间 ξ-Lie导子 导子 Banach space ξ-Lie derivation derivation
  • 相关文献

参考文献11

  • 1WU Jing, LU Shijie, LI Pengtong. Characterizations of derivations on some operator algebras E J ]. Bull Austral Math Soc, 2002, 66:227-232.
  • 2HOU Jinchuan, QI Xiaofei. Derivable maps at some points on JSL algebrasE J]. Linear Algebra Appl, 2008, 429:1851-1863.
  • 3曹宗霞,张建华.一类环上的Jordan可导映射[J].山东大学学报(理学版),2012,47(4):5-10. 被引量:1
  • 4HOU Jinchuan, AN Runling. Additive maps behaving like derivations at idempotent-product elements [J]. J Pure Appl Alge- bra, 2011,215: 1852-1862.
  • 5QI Xiaofei, CUI Jianlian, HOU Jinchuan. Characterizing additive C-Lie derivations of prim algebras by C-Lie zero products E J]. Linear Algebra Appl, 2011, 434:669-682.
  • 6LU Fangyan, WU Jing. Characterizations of Lie derivations of B(X) [J]. Linear Algebra Appl, 2010, 432:89-99.
  • 7QI Xiaofei, HOU Jinchuan. Additive Lie (:-Lie) derivations and generalized Lie (:-Lie) derivations on nest algebras [J] Linear Algebra Appl, 2009, 431 : 843-854.
  • 8JI Peisheng, QI Weiqing. Characterizations of Lie derivations of tringular algebras [J]. Linear Algebra Appl, 20 l 1,435 : 1137- 1146.
  • 9陈琳,张建华.套代数上的零点Lie可导映射[J].数学学报(中文版),2009,52(1):105-110. 被引量:9
  • 10BRESAR M. Characterizing homomorphisms, multipliers and derivations in rings with idempotents [ J]. Proc Roy Soc Edin- burgh sect, 2007 A: 137 9-21.

二级参考文献31

  • 1Zhu J., Generalized derivable mappings at the point zero on nest algebras, Acta Mathematica Sinica, Chinese Series, 2002, 45(4): 783-788.
  • 2Jing W., Lu S., Li P., Characterisations of derivations on some operator algebras, Bull. Austral. Math. Soc., 2002, 66: 227-232.
  • 3Li J., Pan Z., Xu H., Characterizations of isomorphisms and derivations of some algebras, J. Math. Anal. Appl., 2007, 332:1314-1322.
  • 4Zhu J., Xiong C. Generalized derivable mappings at zero point on some reflexive operator algebras, Linear Algebra Appl., 2005, 397: 367-379.
  • 5Zhu J., Xiong C., Derivable mappings at unit operator on nest algebras, Linear Algebra Appl., 2007, 422: 721-735.
  • 6Li P., Ma J., Derivations, local derivations and atomic Boolean subspace lattices, Bull. Austral. Math. Soc., 2002, 66: 477-486.
  • 7Johnson B. E., Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc., 1996, 120: 455-473.
  • 8Cheung W. S., Lie derivation of triangular algebras, Linear and Multilinear Algebra, 2003, 51: 299-310.
  • 9Mathieu M., Villen.a A. R., The structure of Lie derivations on C^* algebras, J. Funct. Anal., 2003, 202: 504-525.
  • 10Zhang J., Lie derivations on nest subalgebras of von Neumann algebras, Acta Mathematica Sinica, Chinese Series, 2003, 46(4): 657-664.

共引文献8

同被引文献10

  • 1HOU J C, QI X F. Additive maps derivable at some points on J-subspace lattice algebras [ J ]. Linear Algebra and its Applications, 2008, 429 (8 -9) : 1851 -1863.
  • 2HOU J C, AN R L. Additive maps on rings behaving like derivations at idempotent-product dements[ J]. Journal of Pure and Applied Algebra, 2011,215(8) : 1852 -1862.
  • 3QI X F, CUI J L, HOU J C. Characterizing additive ξ-Lie derivations of prime algebras by ξ-Lie zero products[ J]. Linear Algebra and its Applica- tions, 2011,434(3): 669-682.
  • 4QI X F, HOU J C. Additive Lie (ξ-Lie) derivations and generalized Lie (ξ-Lie) derivations on nest algebras[J]. Linear Algebra and its Applica- tions, 2009, 431 (5 - 7 ) : 843 - 854.
  • 5JI P S, QI W Q. Characterizations of Lie derivations of triangular algebras [ J ]. Linear Algebra and its Applications, 2011,435 (5) : 1137 - 1146.
  • 6齐霄霏,侯晋川.三角代数上的ξ-Lie可乘映射[J].数学学报(中文版),2009,52(3):595-600. 被引量:3
  • 7李彩红,张建华.三角代数上的零点ξ-Lie可导映射[J].陕西师范大学学报(自然科学版),2011,39(3):15-19. 被引量:3
  • 8张芳娟,张建华,陈琳,朱新宏.因子von Neumann代数上的非线性Lie导子[J].数学学报(中文版),2011,54(5):791-802. 被引量:10
  • 9王婷,高景利.子空间格代数上的ξ-Lie导子[J].南阳师范学院学报,2015,14(6):1-4. 被引量:1
  • 10周斯名.关联代数上的非线性Lie中心化子[J].湖南文理学院学报(自然科学版),2022,34(3):16-22. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部