期刊文献+

CE图:一种余热利用循环及工质选择的定量评价方法 被引量:6

CEDiagram:A Quantitative Evaluation Criterion for Waste Heat Recovery Power System and Working Fluids with Applications
下载PDF
导出
摘要 鉴于当前余热利用循环的系统优劣性评价和工质筛选缺乏定量的方法和评价准则,以帕累托最优解为基本思想,以多目标函数遗传算法为实现手段,在综合考虑年度经济收益及能量利用效率的基础上,提出了余热利用评价火用效率一年度现金流量双效图(以下简称CE图),给出了CE图的制作方法,分析说明了CE图中各特殊点的意义。以两种常见的余热利用循环系统~一基本有机朗肯循环和内回热有机朗肯循环为例,采用30种常见有机工质,在100~300℃之间的不同余热温度下解释说明了所提出的CE图如何用来评价余热利用循环系统的优劣性,以及如何用来进行工质的筛选。对不同系统、不同工质CE图的对比方法进行了阐述,并且对CE图在余热利用领域的进一步开发利用进行了展望。 On the basis of the concept of Pareto optimum solution to the multi-object function and the comprehensive considerations of both annual cash-flow and energy utilization efficiency, a double-efficiency diagram of annual cash flow-exergy efficiency (CE) was proposed by the implementation of the multi-objectives genetic algorithm. For the CE diagram, the graphing method was described, and the meaning of endpoints was analyzed. 30 chlorine-absent working fluids were employed and tested under different working conditions. Typical ORC systems (i. e. basic organic Rankine cycle, BORC, and organic Rankine cycle with internal heat exchanger, IHORC) were both studied as examples. The proposed method can be used for working fluids selection and thermodynamic system comparison, and case studies were given by segmenting the CE diagrams into different parts. In addition, an outlook for the further applications of CE was presented. The proposed quantitative method would be applicable to any closed loop waste heat recovery thermodynamic system and working fluids.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第9期8-15,共8页 Journal of Xi'an Jiaotong University
基金 国家重点基础研究发展计划资助项目(2013CB228304) 教育部高等学校博士学科点专项科研基金优先发展领域资助项目(20120201130006)
关键词 余热利用评价图 评价方法和评价准则 有机朗肯循环 有机工质 performance evaluation diagram for waste heat recovery evaluation method and criterion organic Rankine cycle organic working fluid
  • 相关文献

参考文献2

二级参考文献16

  • 1魏东红,陆震,鲁雪生,顾建明.废热源驱动的有机朗肯循环系统变工况性能分析[J].上海交通大学学报,2006,40(8):1398-1402. 被引量:40
  • 2Calm J M, Hourahan G C. Refrigerant data summary [ J].Engineered Systems, 2001, 18 ( 11 ) : 74-88.
  • 3Lemmon E W, McLinden M O, Huber M L. NIST reference fluid thermodynamic and transport properties-REFPROP, Version 8.0 [ Z ]. National Institute of Standard Technology, 2002.
  • 4Mills D. Advances in solar thermal electricity technology[J]. Solar Energy, 2004, 76:19-31.
  • 5Goswami D Y, Vijayaraghavan S, Lu S, et al. New and emerging developments in solar energy[ J]. Solar Solar Energy, 2004, 76: 33-43.
  • 6Lu Shaoguang. Thermodynamic analysis and optimization of a new ammonia based combined power/cooling cycle [ D]. Florida: University of Florida, 2002.
  • 7Xu F, Goswami D Y. Thermodynamic properties of ammoniawater mixtures for power-cycle applications [ J ]. Energy, 1999, 24 : 525-536.
  • 8Xu Feng, Yogi Goswami D, Bhagwat Sunil S. A combined power/cooling cycle[J]. Energy, 2000, 25:233-246.
  • 9Saleh Bahaa, Koglbauer Gerald, et al. Working fluids for low-temperature organic Rankine cycles[J]. Energy, 2007, 32:1210-1221.
  • 10Madhawa Hettiarachchi H D, et al. Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources[J]. Energy, 2007, 32:1698-1706.

共引文献49

同被引文献29

引证文献6

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部