期刊文献+

非正弦振型对沉浮翼型推力产生的影响 被引量:3

Numerical Study of Nonsinusoidal Motion Effect on Plunging Airfoil Propulsion
下载PDF
导出
摘要 对二维沉浮振荡NACA0012翼型周围流场进行了数值模拟,通过改变非正弦参数K实现了不同的非正弦振型,由此分析了非正弦振型对推力产生的影响。结果表明:非正弦振型主要通过影响瞬时推力系数、最大推力系数和流场结构来影响沉浮翼型推力的产生;较正弦沉浮振动,K大于0时对应的振型可以增加平均推力系数,在一定沉浮频率和幅度下,平均推力系数随K的增加而增大,推进效率随K的增加而降低;振型对流场涡结构有明显的影响,随着K增大,翼型尾缘产生更强的反卡门涡街,从而引起推力系数增大,但K增大会使前缘分离更加严重,导致推进效率降低。 The effect of nonsinusoidal motion on plunging airfoil aerodynamics for thrust generation was numerically studied with a 2-D NACA0012 airfoil at Re = 10^4. A nonsinusoidal parameter K was employed to realize various nonsinusoidal motions. The results reveal that nonsinusoidal motion has a noticeable effect on the aerodynamic performance, as it affects the instantaneous force coefficients, maximum thrust coefficients, and flow structures. An increase in K results in better thrust generation performance at a fixed St, especially for K^0. It is also found that the nonsinusoidal motions have notable effect on the wake pattern, and a larger K induces stronger reverse von Karman vortex in the wake, which in turn leads to the thrust generation enhancement. However, the propulsive efficiency decreases with the increasing K because of the larger scale of leading edge separation caused by the larger K.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第9期55-59,139,共6页 Journal of Xi'an Jiaotong University
关键词 沉浮翼型 非正弦振动 推进力 数值模拟 plunging airfoil nonsinusoidal motion propulsion numerical simulation
  • 相关文献

参考文献14

  • 1LEWIN J C, HAJ-HARIRI H. Modelling thrust gen- eration of a two-dimensional heaving airfoil in a viscous flow [J]. Journal of Fluid Mechanic, 2003, 492: 339- 362.
  • 2ASHRAF M A, LAI J C S, YOUNG J. Numerical a- nalysis of flapping wing aerodynamics [C]//Proceed- ings of 16th Australasian Fluid Mechanics Conference. Brisbane, Australia.. University of Queensland, 2007 1283-1290.
  • 3ASHRAF M A, YOUNG J, LAI J C S. Reynolds num- ber, thickness and camber effects on flapping airfoil propulsion [J]. Journal of Fluids and Structures, 2011, 27(2): 145-160.
  • 4LU K, XIE Y H, ZHANG D. Numerical study of large amplitude, nonsinusoidal motion and camber effects on pitching airfoil propulsion [J]. Journal of Fluids and Structures, 2013, 36: 184-194.
  • 5ANDERSON J M, Streitlien K, Barrett D S, et al. Oscillating foils of high propulsive efficiency [J]. Journal of Fluid Mechanics, 1998, 360: 41-72.
  • 6SCHOUVEILER L, HOVER F S, TRIANTAFYL- LOU M S. Performance of flapping foil propulsion [J].Journal of Fluids and Structures, 2005, 20 (7): 949-959.
  • 7HOVER F S, HAUGSDAL O, TRIANTAFYLLOU M S. Effect of angle of attack profiles in flapping foil propulsion [J]. Journal of Fluids and Structures, 2004, 19(1): 37-47.
  • 8KAYA M, TUNCER H. Nonsinusoidal path optimi- zation of a flapping airfoil [J].AIAA Journal, 2007, 45(8) : 2075-2082.
  • 9BERMAN G J, WANG Z J. Energy-minimizing kine- matics in hovering insect flight [J]. Journal of Fluid Mechanics, 2007, 582: 153-168.
  • 10HEATHCOTE S, WANG Z, GURSUL I. Effect of spanwise flexibility on flapping wing propulsion [J]. Journal of Fluids and Structures, 2008, 24(2): 183-199.

同被引文献24

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部