期刊文献+

金属氢化物热压缩机吸放氢传热传质的对称性研究 被引量:3

Study on Heat and Mass Transfer Symmetry Characteristic of Metal Hydride Thermal Compressor During Absorption/Desorption Process
下载PDF
导出
摘要 针对金属氢化物热压缩机(MHTC)在实际应用过程中存在的吸放氢非对称性限制,开展了MHTC传热传质对称性的研究和优化。根据局部热平衡模型,以2D圆环剖面为计算区域,对MHTC多管束反应器实施了模拟,并对模拟过程中的参数及结构进行了优化。优化结果表明:以4层管的多管束反应器为基准,改变吸放氢反应条件能改善反应过程的不对称性特征,即吸、放氢压力分别为2、0.05MPa,温度为293、393K,传热系数为1 000 W/(m2·K)时,吸氢反应分率由0.1上升到0.9;放氢反应分率由0.9降至0.1时,所用时间分别为350和360s,温度变化幅度分别为40和43K,显示出明显的对称性。在反应前20s内,放氢过程中平衡压力的变化剧烈,占平衡压力总变化量的50%以上,为反应过程中的高效反应阶段。 Research and optimization were conducted on heat and mass transfer symmetry of metal hydride thermal compressor (MHTC) between absorption/desorption during the operation of MHTC. On the basis of the local thermal equilibrium model, numerical simulation was performed on a domain with 2D annulus in multi-tube MHTC reactors, and the parameters of the simulation process and structure were also optimized. The results show that for the 4-layer multi-tube reactor, it expends 350 s for the reaction fraction to increase from 0.10 to 0.90 during absorption and 360 s to drop from 0.90 to 0.10 during desorption when the hydrogen pressure, temperature, and heat transfer coefficient are 2/0.05 MPa (absorption/desorption), 293/393 K, 1 000 W · m-2 · K-1, respectively. The largest temperature differences are 40 K and 43 K, respectively, showing a clear asymmetry between absorption/desorption. The equilibrium pressure inside the multi-tube reactor changes significantly and more than 50% of its total variation occurs in the first 20 s during desorption.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第9期119-125,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(21276209) 西安市科技局技术转移促进工程项目(CX1245-7) 西安市碑林区科技计划资助项目(GX1204) 西北大学研究生自主创新资助项目(YZZ12041)
关键词 金属氢化物 热压缩机 反应器 传热传质 hydride thermal compressor reactor heat and mass transfer
  • 相关文献

参考文献21

  • 1MUTHUKUMAR P, GROLL M. Metal hydride based heating and cooling systems: a review [J]. Interna- tional Journal of Hydrogen Energy, 2010, 35 (8): 3817-3831.
  • 2鲍泽威,杨福胜,吴震,张早校.金属氢化物反应器吸氢过程的热质传递特性分析[J].西安交通大学学报,2012,46(9):49-54. 被引量:9
  • 3NOMURA K, AKIBA E, ONO S. Development of a metal hydride compressor [J]. Journal of the Less- Common Metals, 1983, 89(2): 551-558.
  • 4MUTHUKUMAR P, MAIYA M P, MURTHY S S. Experiments on a metal hydride based hydrogen com- pressor [J]. International Journal of Hydrogen Ener- gy, 2005, 30(8): 879-892.
  • 5YANG F S, MENG X Y, DENG J Q, et al. Identif- ying heat and mass transfer characteristics of metal hy- dride reactor during adsorption parameter analysis and numerical study [J]. International Journal of Hydro- gen Energy, 2008, 33(3): 1014-1022.
  • 6WANG Yuqi, YANG Fusheng, MENG Xiangyu, et al. Simulation study on the reaction process based single stage metal hydride thermal compressor [J]. Interna- tional Journal of Hydrogen Energy, 2010, 35(1) : 321- 328.
  • 7DHAOU H, ASKRI F, BEN S M, et al. Measurement and modelling of kinetics of hydrogen sorption by La- Nis and two related pseudobinary compounds [J]. In- ternational Journal of Hydrogen Energy, 2007, 32(5) 576-587.
  • 8WANG X H, BEI Y Y, SONG X C, et al. Investiga- tion on high-pressure metal hydride hydrogen compres- sors [J]. International Journal of Hydrogen Energy, 2007, 32(16): 4011-4015.
  • 9MUTHUKUMAR P, PRAKASH M M, SRINIVA- SAM S. Performance tests on a thermally operated hydrogen compressor [J]. International Journal of Hy drogen Energy, 2008, 33(1): 463-469.
  • 10PARK I S, KIM J K, KIM K J, et al. Investigation of coupled ABs type high-power metal hydride reactors [J]. International Journal of Hydrogen Energy, 2009, 34(14) : 5770-5777.

二级参考文献24

  • 1王玉琪,杨福胜,张早校,冯霄,郭权发.金属氢化物反应器的设计与过程模拟[J].西安交通大学学报,2006,40(7):831-835. 被引量:10
  • 2Wang Yuqi,Yang Fusheng,Zhang Zaoxiao,et al.Improved design of metal hydride reactor for heat pump applications[C]∥ 5th International symposium on multiphase flow,heat mass transfer and energy conversion.Xi'an:Xi'an Jiaotong University Press,2005:240-245.
  • 3Dehouche Z,Dejong W,Willers E,et al.Modelling and simulation of heating/air-conditioning systems using the multi-hydride thermal-wave concept[J].Applied Thermal Engineering,1998,18(6):457-480.
  • 4Klein H P,Groll M.Development of a two-stage metal hydride system as topping cycle in cascading sorption systems for cold generation[J].Applied Thermal Engineering,2002,22(6):631-639.
  • 5Supper W,Groll M,Mayer U.Reaction kinetics in metal hydride reaction beds with improved heat and mass transfer[J].Journal of the Less-Common Metals,1984,104(2):279-286.
  • 6Anevi G,Jansson L,Lewis D.Dynamics of hydride heat pumps[J].Journal of the Less-Common Metals,1984,104(2):341-348.
  • 7Willers E,Groll M.Evaluation of metal hydride machines for heat pumping and cooling applications[J].International Journal of Refrigeration,1999,22(1):47-58.
  • 8Cho C J.The economic energy environmental policy problem:an application of the interactive multiobjective decision method for Chungbuk province[J].Journal of Environmental Management,1999,56(2):119-131.
  • 9Lloyd G M,Razani A,Kim K J.Formulation and numerical solution of non-local thermal equilibrium equations for multiple gas-solid porous metal hydride reactors[J].ASME J of Heat Transfer,2001,123(3):520-526.
  • 10MUTHUKUMAR P,GROLL M.Metal hydride based heating and cooling systems:a review[J].Internation-al Journal of Hydrogen Energy,2010,35(8):3817-3831.

共引文献14

同被引文献25

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部