期刊文献+

基于改进HOG描述符的行人检测算法 被引量:2

Pedestrian Detection Algorithm Based on Improved HOG Descriptor
下载PDF
导出
摘要 针对现有面向梯度的直方图(HOG)描述符及其改进描述方式应用于行人检测时存在的运算速度较慢问题,提出了一种新的改进HOG描述方法。该方法对HOG描述符进行降维处理,选取特征中最具特征表达能力的部分特征向量,引入支持向量机(SVM)线性分类器对其进行训练,最后,利用所得结果进行行人检测。试验结果表明,基于该算法的行人检测算法在对检测正确率影响很小的情况下,可以提高约30%的运算速度。 Histograms of oriented gradients (HOG) descriptor and the improved description meth- ods for pedestrian detection exists a problem with low operation speeds. To solve this problem, an improved HOG description method is proposed. The method can reduce the dimension of the HOG descriptor and choose the most important features. The support vector machine (SVM) lin- ear classifier is used to train these features. Finally, results are used for pedestrian detection. Experimental results show that the pedestrian detection algorithm based on the algorithm can in- crease the detection speed by 30% with little effect on the accuracy rate.
出处 《指挥信息系统与技术》 2013年第4期55-59,共5页 Modern Electronic Engineering
关键词 行人检测 面向梯度的直方图描述符 主分量分析 pedestrian detection histograms of oriented gradients (HOG)descriptor principlecomponent analysis (PCA)
  • 相关文献

同被引文献22

  • 1张虹,陈文楷.一种基于小波矩的图像识别方法[J].北京工业大学学报,2004,30(4):427-431. 被引量:11
  • 2Mori G,Malik J.Recovering 3D human body configu-rations using shape contexts [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(7):1052-1062.
  • 3Agarwal A,Triggs B.Recovering 3D human pose from monocular images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(1):44-58.
  • 4Cristian S,Allan Jepson.Generative modeling for con-tinuous non-linearly embedded visual inference [C]//Proceedings of the 21st International Conference on Machine Learning.Banff:ACM Press,2004:759-766.
  • 5Tenenbaum J B,de Silva V,Langford J C.A global ge-ometric framework for nonlinear dimensionality reduc-tion[J].Science,2000,290(22):2319-2323.
  • 6Zhao Xu,Liu Yuncai.Generative tracking of 3D hu-man motion by hierarchical annealed genetic algorithm [J].Pattern Recognition,2008,41(8):2470-2483.
  • 7Vijay J,Emanuele T,Spela I.Markerless human artic-ulated tracking using hierarchical particle swarm opti-mization[J].Image and Vision Computing,2010,28(11):1530-1547.
  • 8Isard M,Blake A.Condensation:conditional density propagation for visual tracking[J].International Jour-nal of Computer Vision,1998,29(1):5-28.
  • 9de Castro L N,Von Zuben F J.Learning and optimiza-tion using the clonal selection principle [J].IEEE Transactions on Evolutionary Computation,2002,6(3):239-251.
  • 10Sigal L,Balan A O,Black M J.HumanEva:synchro nized video and motion capture dataset and baseline al gorithm for evaluation of [J].International Journal articulated human motion of Computer Vision,2010,87(1-2):4-27.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部