期刊文献+

面向多敏感属性的隐私保护方法 被引量:1

Privacy Preserving Methods for Multiple Sensitive Attributes
下载PDF
导出
摘要 针对现有的多敏感属性数据发布方法中存在的隐私泄露问题,在分析多维桶分组方法的基础上,基于分解的思想,提出一种新的数据发布模型(l1,l2,…,ld)-uniqueness,同时给出相应的匿名算法。该算法考虑了等价组中敏感属性值的分布问题,对各个敏感属性单独处理,打破了敏感属性间一一对应的关系,可以抵御背景知识攻击和相似性攻击。理论分析和实验证明,该算法可以有效防止隐私泄露,增强数据发布的安全性。 For the privacy leak problems of the existing multiple sensitive attributes data publishing methods, based on the multi- dimensional bucket grouping approach and the idea of decomposition, a new data publication model is defined, named(l1 ,l2 ,…, ld ) -uniqueness, and the corresponding anonymous algorithm is proposed. The algorithm considers the distribution of the sensitive attribute values in the group, processes each sensitive attribute independently, and it can withstand the background attacks and the similarity attacks. The theoretical analysis and experiments show that the new method can effectively prevent the loss of priva- cy, and enhance data security.
出处 《计算机与现代化》 2013年第8期168-171,174,共5页 Computer and Modernization
基金 国家自然科学基金资助项目(61170221)
关键词 数据发布 多敏感属性 隐私保护 背景知识 data publication multiple sensitive attributes privacy preserving background knowledge
  • 相关文献

参考文献14

  • 1Fung B C M, Wang Ke, Chen Rui, et al. Privacy-preser- ving data publishing: A survey of recent developments[J]. ACM Computing Surveys, 2010,42 (4) : 1-55.
  • 2Sweeny L. K-anonymity: A model for protecting privacy [ J ]. International Journal on Uncertainty Fuzziness and Knowledge-based Systems, 2002,10 ( 5 ) : 557-570.
  • 3Kristen LeFevre, David J DeWitt, Raghu Ramakrishnan. Mondrian multidimensional K-anonymity [ C ]/! Proceed- ings of the 22nd International Conference on Data Engi- neering. 2006:25.
  • 4Maheshwarkar Nidhi, Pathak kshitij, Chourey Vivekanand. Performance evaluation of vatious K-anonymity techniques [ C l// The 4th International Conference on Machine Vi- sion:Computer Vision and Image Analysis; Pattern Recogni- tion and Basic Technologies. 2012:8.
  • 5Sofia-Comas Jordi, Domingo-Ferrer Josep. Probabilistic k- anonymity through microaggregation and data swapping [ C]/! 2012 IEEE International Conference on Fuzzy Sys- tems. 2012 : 1-8.
  • 6Machanavajjhala A, Kifer D, Gehrkej, et al. L-diversity: Privacy beyond K-anonymity [ J ]. ACM Transactions on Knowledge Discovery from Data, 2007,1 ( 1 ) : 1-12.
  • 7Wong R C-W, Li Jiu-yong, Fu A W-C, et al. (a,k)-a- nonymous data publishing[ J]. Journal of Intelligent Infor- mation Systems, 2009,53 (2) : 209-234.
  • 8Li Ninghui, Li Tiancheng, Venkatasubramanian S. t-Close- ness: Privacy beyond k-anonymity and 1-diversity [ C l// The 23rd International Conference on Data Engineering. 2007 : 106-115.
  • 9Sha Chaofeng, Li Yi, Zhou Aoying. On t-closeness with KL-divergence and semantic privacy [ C ]//The 15th Inter- national Conference on Database Systems for Advanced Ap- plications. 2010:153-167.
  • 10杨晓春,王雅哲,王斌,于戈.数据发布中面向多敏感属性的隐私保护方法[J].计算机学报,2008,31(4):574-587. 被引量:59

二级参考文献45

  • 1杨晓春,王斌,于戈.支持信息共享的有效的安全数据发布算法[J].中国科学(F辑:信息科学),2009,39(8):799-808. 被引量:1
  • 2杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 3LI Ning-hui, LI Tian-cheng, VENKATASUBRAMANIAN S, et al. Tcloseness: privacy beyond K-anonymity and 1-diversity [ C ]// Proc of the 23rd IEEE ICDE 2007. 2007 : 106-115.
  • 4SWEENEY L. K-anonymity : a model for protecting privacy [ J ]. inter- national Journal of Uncertainty , Fuzziness, and Knowledge- Based Systems, 2002, 10 (5) :557-.570.
  • 5MEYERSON A, WILLIAMS R. On the complexity of optimal K-ano- nymity [ C ]//Proc of the 23rd ACM SIGACT-SIGMOD-SIGART Sym- posium on Principles of Database Systems. 2004 : 223- 228.
  • 6SWEENEY L. Achieving K-anonymity privacy protection using gene- ralization and suppression[ J]. International Journal on Uncertain- ty, Fuzziness and Knowledge-based Systems, 2002, 10 (5) : 571-588.
  • 7TRUTA T M, VINAY B. Privacy protection: p-sensitive K-anonymity property[ C]//Proc of the 22nd International Conference on Data En- gineering Workshops. Washington DC:IEEE Computer Society,2006: 94.
  • 8MACHANAVAJJHALA A, GEHRKE J, KIFER D, et al. L-diversity:privacy beyond K-anonymity[J]. ACM Trans on Knowledge Dis- coven/From Data,2007,1 (1) :1-12.
  • 9WONG R C W, LIU Yu-bao, YIN Jian, et al. (α, k)-anomymity based privacy preservation by lossy join[ C]// Proc of the Joint 9th Asia-Pacific Web and 8th Intemational Conference on Web-Age Infor- mation Management Conference on Advances in Data and Web Mana- gement. Berlin : Springer, 2007:733-744.
  • 10XIAO Xiao-kui, TAO Yu-fei. Anatomy:simple and effective privacy preservation[ C]//Proc of the 32nd International Conference on Very Large Data Bases. 2006 : 139-150.

共引文献63

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部