摘要
针对问答社区中问题主题类别划分的粗糙性,应用粒子群优化算法,引入问答社区种子和问答社区主题的概念,首先挖掘问答社区中存在的显性联系,构建基本问答社区结构,然后,深入分析问答社区内容,根据问题节点之间的隐性特征,定义问答社区主题,精分细化问答社区主题类别,直到结构稳定.实验结果表明,该算法能加速问题节点的收敛,极大地提高了问答社区主题挖掘精度.
Aiming at the roughness of theme category existing in question and answering(Q&A) community, using particle swarm optimization algorithm, concepts of community seeds and community themes are introduced. Firstly, explicit linkages existing in Q&A community are mined and the basic structure of Q&A community is built. Then, the contents of Q&A community are deeply analyzed, and the topics of Q&A community are defined according to the recessive characteristics of question nodes. The theme categories are refined until the structure is stable. Experimental results show that the algorithm can accelerate the question nodes' convergence and greatly improves the accuracy of theme mining of Q&A community.
出处
《新乡学院学报》
2013年第3期199-201,204,共4页
Journal of Xinxiang University
基金
安徽省教育厅自然科学研究一般项目(KJ2013B283)
宿州学院2012年度国家级大学生创新创业训练计划项目(201210379004)
宿州学院智能信息处理实验室开放课题(2012YKF36)
关键词
粒子群优化算法
问答社区
社区主题
社区种子
主题细化
particle swarm optimization algorithm
question and answering community
community topics
community seeds
theme refinement