期刊文献+

基于GPGPU的LDPC解码访存优化技术

A memory optimization strategy of LDPC decoding based on GPGPU
下载PDF
导出
摘要 低密度奇偶校验码(low-density parity-check,LDPC)作为一类高性能的差错控制编码被用于多个通信标准中,但解码算法计算量巨大,限制了其潜能,基于通用图形处理器(general-purpose GPU,GPGPU)的LDPC解码器由于其灵活性,近年来备受关注。深入分析了LDPC解码算法特性,提出Tanner图的交织器表示,简化了解码算法;结合GPU体系结构特点提出自顶向下的多步优化策略,充分挖掘了GPU的加速性能。实验结果显示,平衡计算访存负载、合并对齐全局访存、充分利用寄存器资源,可显著提高GPU性能;相对于CPU实现,可取得383倍的加速,综合性能优于现有的基于GPU的LDPC解码实现。 As powerful, error correcting codes, low-density parity-check (LDPC) codes have been adopted by new emerging stand- ards for digital communication; however, their performance gain is constrained due to their huge computation demand. The GPU- based LDPC decoder is a recent hot research subject for its lower cost and better flexibility. We analyze the parallelism property of SPA (sum product algorithm) and propose an easy way to translate the Tanner graph into an interleaver. From a hardware ar chitecture perspective, we propose an efficient up-to-down multi-stage optimization strategy which releases GPU's acceleration power to its limit gradually. Experimental results demonstrate that balancing computation and memory access, coalescing global memory accessing and aggressive usage o{ the o^chip high speed resource (e. g. , shared memory and registers) can promote the performance significantly. The proposed decoder can achieve 383x-speedup compared to CPU-based decoder and also outperfor mances existing GPU-based ones in terms of overall performance.
出处 《中国科技论文》 CAS 北大核心 2013年第7期626-632,共7页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20114307110001) 国家自然科学基金资助项目(60873016 61170083)
关键词 低密度奇偶校验码解码器 和积算法 通用图形处理器 优化策略 并行计算 LDPC decoder sum-product algorithm general purpose graphic processor unit optimization strategy parallel cornputing
  • 相关文献

参考文献1

二级参考文献30

  • 1Gallager R G. Low-density parity-check codes. IRE Transactions on Information Theory, 1962, 8(1): 21-28.
  • 2Mackay D J C, Neal R M. Near Shannon limit performance of low density parity check codes. IEE Electronics Letters, 1996, 32(18): 1645-1646.
  • 3Lin S, Costello D J. Error Control Coding. 2nd Ed., Prentice Hall, 2004.
  • 4Tanner R. A recursive approach to low complexity codes. IEEE Transactions on Information Theory, 1981, 27(5): 533- 547.
  • 5Quaglio F, Vacca F, Castellano C, Tarable A, Masera G. Interconnection framework for high-throughput, flexible LDPC decoders. In Proc. Design, Automation and Test in Europe (DATE2006), Munich, Germany, March 6-10, 2006, pp.124- 129.
  • 6Ping L, Leung W K. Decoding low density parity check codes with finite quantization bits. IEEE Communications Letters, 2000, 4(2): 62-64.
  • 7Zhang T, Parhi K. Joint (3, k)-regular LDPC code and decoder/encoder design. IEEE Transactions on Signal Processing, 2004, 52(4): 1065-1079.
  • 8Verdier F, Declercq D. A low-cost parallel scalable FPGA architecture for regular and irregular LDPC decoding. IEEE Transactions on Communications, 2006, 54(7): 1215-1223.
  • 9Falcao G, Gomes M, Gonqalves J, Faia P, Silva V. HDL library of processing units for an automatic LDPC decoder design. In Proc. IEEE Ph.D. Research in Microelectronics and Electronics (PRIMB), Otranto, Italy, June 11-16, 2006, pp.349-352.
  • 10Comes M, Silva V, Neves C, Marques R. Serial LDPC decoding on a SIMD DSP using horizontal-scheduling. In Proc. 14th European Signal Processing Conference (EUSIPCO2006), Florence, Italy, Sept. 4 8, 2006.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部