摘要
Structural redundancy elimination in case resource pools (CRP) is critical for avoiding performance bottlenecks and maintaining robust decision capabilities in cloud computing services. For these purposes, this paper proposes a novel approach to ensure redundancy elimination of a reasoning system in CRP. By using α entropy and mutual information, functional measures to eliminate redundancy of a system are developed with respect to a set of outputs. These measures help to distinguish both the optimal feature and the relations among the nodes in reasoning networks from the redundant ones with the elimination criterion. Based on the optimal feature and its harmonic weight, a model for knowledge reasoning in CRP (CRPKR) is built to complete the task of query matching, and the missing values are estimated with Bayesian networks. Moreover, the robustness of decisions is verified through parameter analyses. This approach is validated by the simulation with benchmark data sets using cloud SQL. Compared with several state-of-the-art techniques, the results show that the proposed approach has a good performance and boosts the robustness of decisions.
Structural redundancy elimination in case resource pools (CRP) is critical for avoiding performance bottlenecks and maintaining robust decision capabilities in cloud computing services. For these purposes, this paper proposes a novel approach to ensure redundancy elimination of a reasoning system in CRP. By using α entropy and mutual information, functional measures to eliminate redundancy of a system are developed with respect to a set of outputs. These measures help to distinguish both the optimal feature and the relations among the nodes in reasoning networks from the redundant ones with the elimination criterion. Based on the optimal feature and its harmonic weight, a model for knowledge reasoning in CRP (CRPKR) is built to complete the task of query matching, and the missing values are estimated with Bayesian networks. Moreover, the robustness of decisions is verified through parameter analyses. This approach is validated by the simulation with benchmark data sets using cloud SQL. Compared with several state-of-the-art techniques, the results show that the proposed approach has a good performance and boosts the robustness of decisions.
基金
supported by the National Natural Science Foundation of China (71171143
71201087)
the Tianjin Municipal Research Program of Application Foundation and Advanced Technology of China (10JCY-BJC07300)
the Science and Technology Program of FOXCONN Group (120024001156)