期刊文献+

SrHfON高k栅介质薄膜的漏电特性研究

Growth and Current Leakage Characteristics of SrHfON High-k Gate Dielectric Films
下载PDF
导出
摘要 采用射频反应磁控溅射法在p-Si(100)衬底上成功制备出SrHfON高k栅介质薄膜,并研究了Au/SrHfON/Si MOS电容的漏电流机制及应力感应漏电流(SILC)效应。结果表明,MOS电容的漏电流密度随N2流量的增加而减小。在正栅压下,漏电流主要由Schottky发射机制引起;在负栅压下,漏电流机制在低、中、高栅电场区时分别为Schottky发射、F-P发射和F-N隧穿机制。同时,Au/SrHfON/SiMOS电容表现出明显的SILC效应,经恒压应力后薄膜在正栅压下的漏电流由Schottky发射和F-P发射机制共同作用,且后者占主导地位。 The SrHfON high-k gate dielectric films,deposited by RF reactive magnetron sputtering on p-type Si(100)substrates,were used to fabricate the Au/SrHfON/Si MOS capacitor.The impacts of the growth conditions on the leakage current density were evaluated with X-ray photoelectron spectroscopy and conventional proves.The leakage current conduction mechanisms and the stress induced leakage current(SILC)effect of the MOS capacitor were studied.The leakage current density of the MOS capacitor was found to decrease with an increase of N2 flow rate.At a positive bias of the metal gate,the leakage current mainly originated from Schottky emission,but at a negative bias,the leakage current in the low-,medium-and high-gate voltage ranges resulted from Schottky emission,Poole-Franel(F-P)emission and Fowler-Nordheim(F-N) tunneling,respectively.In addition,the SILC effect was found to dominate the Au/SrHfON/Si MOS capacitor;but after being stressed by a constant voltage,Schottky emission outperforms F-P emission in generating the leakage current.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2013年第8期778-782,共5页 Chinese Journal of Vacuum Science and Technology
基金 国家自然科学基金项目(50902110) 凝固技术国家重点实验室研究基金项目(58-TZ-2011) 111计划(B07040) 西北工业大学基础研究基金项目(JC20110245)
关键词 高K栅介质 SrHfON 漏电流机制 应力感应漏电流 High-k gate dielectric SrHfON Leakage current conduction mechanism SILC
  • 相关文献

参考文献21

  • 1Moore G E.Electronics[J],1965,38:114-117.
  • 2http://www.itrs.net/Links/2008ITRS/Update/2008-Up-date.pdf.
  • 3Wang X J,Zhang L D,LiuM,et al.Appl Phys Lett[J],2008,92:122901.
  • 4Lupina G,Kozl/owski G,Dabrowski J,et al.Appl Phys Lett[J],2008,93:252907.
  • 5Visokay M R,Chambers J J,Rotondaro A L P.Appl Phys Lett[J],2002,80:3183-3185.
  • 6McCarthy I,Agustin M P,Shamuilia S.Thin Solid Films[J],2006,515:2527-2530.
  • 7Feng L P,Liu Z T.Appl Phys Lett[J],2009,94:252907.
  • 8Specht M,StadeleM,Jakschik S.Appl Phys Lett[J],2004,84(16):3076-3078.
  • 9Gong Y P,Li A D,Qian X,et al.J Phys D:Appl Phys[J],2009,42:015405.
  • 10Choi K J,Kim J H,Yoon S G,et al.Vac Sci Technol[J],2004,22:1755-1758.

二级参考文献13

  • 1刘雄英,黄光周,范艺,于继荣.原子层沉积技术及应用发展概况[J].真空科学与技术学报,2006,26(z1):146-153. 被引量:12
  • 2[1]The National Technology Roadmap for Semiconductors, 3rd edition, Semiconductor Industry Association, San Jose, CA, 1997.
  • 3[2]Hubbard K J, Schlom D G. J. Mater. Res., 1996, 11 (11): 2757-2776.
  • 4[3]Temple D, Reisman A. J. Electron. Mater., 1990, 19 (9): 995-1002.
  • 5[4]Kwo J, Hong M, Kortan A R, et al. Appl. Phys. Lett., 2000, 77 (1): 130-132.
  • 6[5]Hwang C S, Kim H J. J. Mater. Res., 1993, 8 (6): 1361-1367.
  • 7[6]Lee B H, Kang L, Nieh R, et al. Appl. Phys. Lett., 2000, 76 (14): 1926-1928.
  • 8[7]Lee A E, Platt C E, Burch J F, et al. Appl. Phys. Lett., 1990, 57 (19): 2019-2021.
  • 9Markku Leskel,Mikko Ritala.Atomic Layer Deposition Chemistry:Recent Developments and Future Challenges[J].Angewandte Chemie International Edition,2003,42(45):5548-5554.
  • 10Kim H.Atomic Layer Deposition of Metal and Nitride Thin Films:Current Research E fforts and Applications for Semiconductor Device Processing[J].Journal of Vacuum Science & Technology B,2003,21(6):2231-2261.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部