期刊文献+

基于量子指针的量子灰度图像处理 被引量:5

Quantum Gray-Scale Image Processing Based on Quantum Pointer
下载PDF
导出
摘要 为了解决量子灰度图像处理中量子图像的表示问题,利用量子态保存图像的灰度信息和位置信息,依据灰度图像灰度变化范围小的优势,提出并证明了一种量子灰度图像的存储表达式,而且在此表达式的基础上,提出了"量子指针"的概念。把量子指针作为图像像素灰度信息与位置信息联系的纽带,利用其双向性和子块性可使得量子灰度图像在存储及其他操作方面更为简单,方便,最后也验证了它的可行性。 In quantum gray-scale image processing,the storage in quantum states is the color information and the position information. According to the advantage of small range of the gray scale in a gray-scale image,this paper proposes and demonstrated a novel storage expression of quantum gray-scale image. Besides,based on the expression,a new concept of"quantum pointer"is put forward. Quantum pointer is the vinculum between the information of gray-scale and position of each pixel in quantum gray-scale images. The paper verifies the feasibility of the proposed quantum pointer and finds it made the storing and other operations of quantum gray-scale image simpler and more convenient with the properties of bi-direction and sub-block.
出处 《华东交通大学学报》 2013年第3期89-95,100,共8页 Journal of East China Jiaotong University
基金 国家自然科学基金项目(61065002)
关键词 量子图像处理 量子灰度图像 量子指针 量子灰度图像存储 quantum image processing quantum gray-scale image quantum pointer quantum gray-scale image storing
  • 相关文献

参考文献22

  • 1PAUL BENIOFF. Quantum mechanical hamiltonian models of turing machines [J]. Journal of Statistical Physics, 1982,29(3) :515-546.
  • 2RICHARD P FEYNMAN. Simulating physics with computers [J]. International Journal of Theoretical Physics, 1982,21 (6/ 7) : 467-488.
  • 3DAVID DEUTSCH. Quantum theory, th church-turing principle and the universal quantum computer[J]. Proceeding of the Royal Society of London, 1985,400(18) : 97-117.
  • 4PETER W SHOR. Algorithms for quantum computation: descrete log and factoring [C ]//Foundations of Computer Science, Preceedings of the 35 Annual Symposium, Washington: Proceedings of IEEE, 1994: 124-134.
  • 5LOV K GROVER. A fast quantum mechanical algorithm for database search [C]//Proceedings of the twenty-eight annual ACM symposium on Theory of computing, New York: ACM, 1996: 212-219.
  • 6GUI LU LONG, WEI LIN ZHANG, YAN SONG LI, et al. Arbitrary phase rotation of the marked state can not be used for grover' s quantum search algorithm[J]. Commun Theor Phys, 1999,32: 335-338.
  • 7GUI LU LONG. Grover algorithm with zero theoretical failure rate [ J 1. Physical Review A, 2001,64(2) :22307-0.
  • 8GUI LU LONG, XIAO LI, YANG SUN. Phase matching condition for quantum search with a generalized initial state [J]. Physics Letters A, 2002,294:143-152.
  • 9NIELSEN M, CHUANG I L, Quantum computation and quantum information[Ml. Cambridge:Cambridge University Press, 2000:216-271.
  • 10VENEGASANDRACA S E, BOSE S. Storing, processing and retrieving and image using quantum mechanics [J]. Quantum Information and Computation, 2003,5105 : 137-147.

二级参考文献13

  • 1LANDAUER R. Irreversibility and heat generation in the computational process' s [ J]. IBM Journal Research and Develop- ment, 1961 (5) : 183-191.
  • 2BENNETT C H. Logical reversibility of computation[ J ]. IBM J Research and Development, 1973 (17) :525-532.
  • 3NIELSEN M A, CHUANG I L. Quantum computation and quantum information [M]. Cambridge: Cambridge University Press, 2000.
  • 4AGARWAL A, JHA N K. Synthesis of reversible logic [ C ]//Design, Automation and Test in Europe Conference and Exhibi- tion, Washington: Proceedings of IEEE, 2004:1384-1385.
  • 5VOS AD, RENTERGEM YV. Reversible computing: from mathematical group theory to electronical circuit experiment [ C ]// Proceedings of the 2nd Conference on Computing Frontiers, New York: Association for Comuting Machinery, 2005 : 35-45.
  • 6ZHOU RIGUI, SHI YANG, WANG HUIAN, et al. Transistor realization of reversible "ZS" series gates and reversible array multiplier [ J ]. Microeleetronics J, 2011,42 (2) : 305-315.
  • 7FEYNMAN R. Quantum mechanical computers [ J ]. Opt News, 1985 ( 11 ) : 11-20.
  • 8PERES A. Reversible logic and quantum computers[J]. Phys Rev, 1985,32(6) :3266-3276.
  • 9BABU H M H, CHOWDHURY A R. Design of a compact reversible binary coded decimal adder circuit [J ]. Elsevier J Syst Archit, 2006,52 (5) : 272-282.
  • 10THAPLIYAL H, SRINIVAS M B. Novel reversible TSG gate and its application for designing reversible carry look ahead ad- der and other adder architectures [ J ]. Computer Systems Architecture, 2005,3740: 805-817.

同被引文献45

  • 1黎松,平西建,丁益洪.开放源代码的计算机视觉类库OpenCv的应用[J].计算机应用与软件,2005,22(8):134-136. 被引量:58
  • 2Benioff P.Quantum mechanical Hamiltonian models of Turing machines[J].Journal of Statistical Physics, 1982,29(3):515-546.
  • 3Feynman R P.Simulating physics with computers[J].International Journal of Theoretical Physics, 1982,21(6):467-488.
  • 4Le P Q, Dong Fangyan, Hirota K.A flexible representation of quantum images for polynomial preparation, image compression, and processing operations[J].Quantum Information Processing, 2011,10(1):63-84.
  • 5Luengo Hendriks C L, Borgefors G, Strand R.Mathematical Morphology and Its Applications to Signal and Image Processing[C].New York: Springer Press, 2013.
  • 6Najman L, Talbot H.Mathematical Morphology: From Theory to Applications[M].London: Wiley, 2010.
  • 7Sinha D, Dougherty E R.Fuzzy mathematical morphology[J].Journal of Visual Communication and Image Representation, 1992,3(3):286-302.
  • 8Gonzalez R C, Woods R E.Digital Image Processing[M].3rd Edition.New Jersey: Prentice-Hall, 2011.
  • 9Gonzalez RC,Woods RE.Digital image processing[M].3rd ed.New Jersey:Prentice-Hall,2011.
  • 10Soille P.Morphological image analysis:Principles and applications[M].2nd ed.New York:Springer Press,2008.

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部