期刊文献+

微通道内液液两相流压力降的测量和关联 被引量:7

Measurement and Correlation of Pressure Drop of Liquid-Liquid Two-Phase Flow in Microchannels
下载PDF
导出
摘要 微通道内液液两相流的压力降对系统内部热量和质量传递具有重要影响。针对环己烷-含0.3%SDS(十二烷基硫酸钠)蒸馏水液液两相系统,利用高速摄像仪对2种不同深宽比的矩形截面直管微通道内的液液两相流进行了实时观测和记录,用压差变送器测定了其在弹状流型下的压力降。微通道尺寸(深度×宽度)分别为400μm×600μm,400μm×800μm。结果表明:弹状流型下的压力降随系统各相流率、毛细数、雷诺数、连续相黏度的增加而增加,随两相速度比值的增加而减小,且当毛细数Ca>0.015或雷诺数Re>20时,压力降随着通道截面深宽比的增加而增加。基于实验结果,修正了均相流模型,提出了新的压力降预测关联式,模型计算结果与实验值吻合良好。 In microchannel,the pressure drop of liquid-liquid two-phase flow is of vital importance for intensifying heat and mass transfer of the flow system.In the present work,liquid-liquid two-phase flow in rectangular microchannels with two different aspect ratios(400 μm×600 μm and 400μm×800 μm) was recorded by using a high-speed camera,and the pressure drop under slug flow regime was measured by using a differential pressure sensor.The cyclohexane was used as the dispersed phase and distilled water with 0.3% SDS(sodium lauryl sulfate) as the continuous phase.The results show that the pressure drop increases with the increases of the flow rates of both phases,the capillary number Ca,the Reynolds number Re and the viscosity of the continuous phase,and decreases with the increase of the velocity ratio of both phases.When Ca 0.015 or Re 20,the pressure drop increases with the increase of the aspect ratio of the microchannel.A modified correlation for homogeneous flow model was proposed for predicting pressure drop under slug flow regime of liquid-liquid two-phase flow in microchannels,and the calculated results show good conformity to the experimental data.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2013年第4期555-560,共6页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金(21106093)
关键词 液液两相流 压力降 微通道 弹状流 微流控 liquid-liquid two-phase flow pressure drop microchannel slug flow microfluidics
  • 相关文献

参考文献4

二级参考文献41

  • 1Wu P, Little W A. Measurement of friction factors for the flow of gases in very fined channels used for microminiature Joule-Thompson refrigerators [J]. Cryogenics, 1983, 23(5): 273-277.
  • 2Liu H, Vando C O, Krishna R. Hydrodynamics of Taylor flow in vertical capillaries: flow regimes, bubble rise velocity, liquid slug length, and pressure drop [J]. lnd Eng Chem Res, 2005, 44(14): 4884-4897.
  • 3Laborie S, Cabassud C, Durand-Bourlier L et al. Characterization of gas-liquid two-phase flow inside capillaries[J]. Chemical Engineering Science, 1999, 54(23): 5723-5735.
  • 4Qian D Y, Adeniyi Lawal. Numerical study on gas and slugs for Taylor flow in a T-junction microchannel [J]. Chemical Engineering Science, 2006, 61(23): 7609-7625.
  • 5Taha T, Cui Z F. CFD modeling of slug flow inside square capillaries [J]. Chemical Engineering Science, 2006,61 (2): 665-675.
  • 6Taha T, Cui Z F. Hydrodynamics of slug flow inside capillaries [J]. Chemical Engineering Science, 2004, 59(6): 1181-1190.
  • 7Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension [J]. Journal of Computation Physics, 1992, 100(2): 335-354.
  • 8Gunther A, Khan S A, Thalmarm M, et al. Transport and reaction in microscale segmented gas-liquid flow [J]. Lab Chip, 2004, 4(4): 278-286.
  • 9Yun J X, Zhang S H, Shen S C, et al. Continuous production of solid lipid nanoparticles by liquid flow-focusing and gas displacing method in microchanncls [J]. Chem Eng Sei, 2009, 64(19): 4115-4122.
  • 10Yun J, Lei Q, Zhang S, et al. Slug flow characteristics of gas-miscible liquids in a rectangular microchannel with cross and T-shaped junctions [J]. Chem Eng Sci, 2010, 65(18): 5256-5263.

共引文献39

同被引文献80

  • 1Whitesides GM. The origins and the future of microfludics. Nature, 2006, 442:368-373.
  • 2de Menech M, Garstecki P, Jousse F, Stone HA. Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech, 2008, 595:141-161.
  • 3Fu TT, Wu YN, Ma YG, Li HZ. Droplet formation and breakup dynamics in microfluidic flow-focusing devices: from dripping to jetting. Chem Eng Sci, 2012, 84:207-217.
  • 4Fu TT, Ma YG, Funfschilling D, Li HZ. Dynamics of bubble breakup in a microfluidic T-junction divergence. Chem Eng Sci, 2011, 66: 4184-4195.
  • 5Wu YN, Fu TT, Zhu CY, Lu YT, Ma YG, Li HZ. Asymmetrical breakup of bubbles at a microfluidic T-junction divergence: feedback effect of bubble collision. Micro Nano, 2012, 13:723-733.
  • 6Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM. Formation of droplets and bubbles in a microfluidic T-junction: scaling and mechanism of break-up. Lab Chip, 2006, 6:437-446.
  • 7Song H, Tice JD, Jsgmagilov RF. A microftuidic system for controlling reaction networks in time. Angew Chem Int Ed, 2003, 42:768-772.
  • 8Link DR, Anna SL, Weitz DA, Stone HA. Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett, 2004, 92: 054503.
  • 9Yamada M, Doi S, Maenaka H, Yasuda M, Seki M. Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis. J Colloid Interf Sci, 2008, 321:401-407.
  • 10Menetrier-Deremble L, Tabeling P. Droplet breakup in microfluidic junctions of arbitrary angles. Phys Rev E, 2006, 74:035303.

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部