期刊文献+

炭膜的二氧化碳吸附扩散性能的研究

The CO_2 Absorption and Diffusion Performances of Carbon Membrane
下载PDF
导出
摘要 以商业化的Kapton型聚酰亚胺为前驱体制备炭膜,采用容量法研究了不同炭化温度制备的炭膜CO2吸附和扩散行为,并利用Sips模型对实验数据进行拟合,DA方程计算炭膜的孔结构参数,Fick扩散模型求取CO2在炭膜内的扩散系数,采用XRD分析探讨了炭膜的炭结构。结果表明,炭膜孔结构随着热解炭化温度的提高,孔径收缩,且当炭化温度从600℃升高到800℃,炭膜的微孔体积随炭化温度的升高而增大,而800℃以后,微孔体积随炭化温度的升高而下降。CO2在不同炭膜中的扩散系数约为1.04×10-13~8.56×10-12m2·s-1,在实验测定的压力范围内扩散系数随着平衡压力的增大呈现出先增大后减小的规律。 Carbon membranes were prepared from the precursor of Kapton-type polyimide under different carbonization temperatures.The CO2adsorption and diffusion performance of the prepared carbon membrane were measured by means of volumetric method,where the adsorption data obtained were fitted by Sips model and the pore structure parameters of carbon membranes were calculated by DA equation.Fick diffusion model was used to calculate the CO2 diffusion coefficients in carbon membrane.Results indicate that the pore structures of carbon membranes are affected by the carbonization temperature.The pore sizes of carbon membrane are reduced as the carbonization temperature rises.The pore volume of carbon membrane is enlarged with the increase of carbonization temperature from 600 to 800℃ and decreased when the temperature is higher than 800℃.The CO2diffusion coefficients in the carbon membranes prepared at different carbonization temperatures are from 1.04×10-13m2·s-1 to 8.56×10-12 m2·s-1.Within the given pressure range in this work,the diffusion coefficient increases at first and then decreases as the equilibrium pressure rises.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2013年第4期579-584,共6页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金面上与重点项目(20776024,20976021,20836006,21176036) 国家863项目(2009AA03Z215,2012AA03A611)
关键词 炭膜 CO2吸附 结构 扩散系数 气体分离 carbon membrane CO2adsorption structure diffusion coefficient gas separation
  • 相关文献

参考文献4

二级参考文献51

  • 1刘振峰,介兴明,金培涛,杨林松,曹义鸣,袁权.亚砜基改性纤维素膜的SO_2气体渗透性能研究[J].高校化学工程学报,2007,21(2):216-220. 被引量:1
  • 2Ismail A F, David L I B. A review on the latest development of carbon membranes for gas separation [J].J Membr Sci. 2001, 193( 1 ): 1-18.
  • 3Saufi S M, Ismail A F. Fabrication of carbon membranes for gas separation--a review [J]. Carbon, 2004, 42(2): 241-259.
  • 4Vu D Q, Koros W J, Miller S J. High-pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes [J]. Ind Eng Chem Res, 2002, 41(3): 367-380.
  • 5Park H B, Suh I Y. Lee Y M. Novel pyrolytic carbon membranes containing silica:Preparation and characterization [J]. Chem Mater, 2002, 14(7): 3034-3046.
  • 6Park H B, Lee Y M. Pyrolyic carbon-silica membrane: a promising membrane material for improved gas separation [J]. J Membr Sci. 2003, 213(1-2): 263-272.
  • 7Park H B, Lee Y M. Fabricaion and characterization ofnanoporous carbon/silica membranes [J]. Adv Mater, 2005, 17(4): 477-483.
  • 8Shiflett M B, Foley H C. On the preparation of supported nanoporous carbon membranes [J]. J Membr Sci., 2000, 179(1-2): 275-282.
  • 9Barsema J N, Balster J, Jordan Vet al. Functionalized carbon molecular sieve membranes containing ag-nanoclusters [J]. J Membr Sci. 2003, 219(1-2): 47-57.
  • 10Liu Q L. Wang T H, Qiu J Set al. A novel carbon/ZSM-5 nanocomposite membrane with high performance for oxygen/nitrogen separation [J]. Chem Commun, 2006, 6(11): 1230-1232.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部