期刊文献+

关于模糊值凸函数的共轭问题的研究 被引量:2

The research on conjugate problem of fuzzy-valued convex function
下载PDF
导出
摘要 在Goetschel-Voxman所引进的序关系下,首先给出了模糊值凸函数的共轭函数的概念,并证明了模糊值凸函数的共轭函数是模糊值凸函数等相关性质;其次给出了模糊值凸函数的二次共轭函数的概念,并证明了相关性质;最后讨论了模糊值凸函数的共轭与下卷积之间的关系,证明了两个模糊值凸函数的共轭函数与其下卷积的共轭函数之间的等式关系. In this paper, based on the ordering introduced by Goetschel-Voxman, we firstly give the conception of the conjugate function for fuzzy-valued convex function and prove some related properties, e. g. the conjugate function of fuzzy-valued convex function is also fuzzy-valued convex function. Secondly, we define the secondary conjugate function of the fuzzy-valued convex function and prove relevant properties. Finally we discuss the relationship between the conjugate and infimal convolution of the fuzzy-valued convex function and proved the equated relationship between the conjugate function of two fuzzy-valued convex functions and the conjugate function of infimal convolution.
出处 《纯粹数学与应用数学》 CSCD 2013年第4期331-337,共7页 Pure and Applied Mathematics
基金 内蒙古自然科学基金(2010MS0119)
关键词 凸模糊值函数 共轭函数 下卷积 次微分 fuzzy-valued convex function, conjugate function, infimal convolution, subdifferential
  • 相关文献

参考文献8

二级参考文献32

  • 1吴从忻 马明.模糊分析学基础[M].北京:国防工业出版社,1991..
  • 2Goetschel Jr R,Voxman W.Elementary fuzzy calculus[J].Fuzzy Sets and Systems,1986,18:31-43.
  • 3Puri M L,Ralescu D A.Differentials of fuzzy functious[J].Journal of Mathematical Analysis and Applications,1983,91:552-558.
  • 4Buckley J J,Feuring T.Introduction to fuzzy partial differential equations[J].Fuzzy Sets and Systems,1999,105:247-248.
  • 5Buckley J J,Feuring T.Fuzzy differential equations[J].Fuzzy Sets and Systems,2000,110:43-54.
  • 6Wang Guixiang,Wu Congxin.Directional derivatives and subdifferential of convex fuzzy mappings and application in covex fuzzy programming[J].Fuzzy Sets and Systems,2003,138:559-591.
  • 7Li Hongxing,Yen V C,Lee E S.Factor space theory in fuzzy information processingcomposition of states of factors and multifactorial decision making[J].Computers and Mathematics with Applications,2000,39:245-265.
  • 8Wu Hsienchung.Duality theorems in fuzzy mathematical programming problems based on the concept of necessity[J].Fuzzy Sets and Systems,2003,139:363-377.
  • 9Liu Yankui,Liu Baoding.Fuzzy random programming with equilibrium chance constraints[J].Information Sciences,2005,170:363-395.
  • 10Wu Hsienchung.Duality theorems and saddle point optimality conditions in fuzzy nonlinearprogramming problems based on different solution concepts[J].Fuzzy Sets and Systems,2007,158:1588-1607.

共引文献7

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部