期刊文献+

广义参数Williams单元分析受弯裂纹梁的应力强度因子 被引量:3

Williams element with generalized degrees of freedom for stress intensity factor of crack in bending beam
下载PDF
导出
摘要 鉴于普通有限元和奇异单元分析三点或四点弯曲裂纹梁时存在精度不高的问题,研究建立了裂尖应力强度因子分析的广义参数Williams单元。首先对梁中裂尖奇异区子单元建立普通有限元刚度方程,然后利用总体位移场和单元位移场之间的关系,将普通单元刚度方程转换成广义参数单元刚度方程,并利用等比级数求和公式获得Williams单元刚度方程的显性表达式,进而分析了影响Williams单元的3个重要参数——径向离散比例因子、子单元数以及级数项数对应力强度因子的影响,并确定了3个参数的取值,α=0.9,m=6,n=100,同时分析了裂纹长度对裂纹梁跨中位移的影响。结果表明,Williams单元比ANSYS商业软件具有更高的计算精度,能够快速稳定收敛,可以较好地解决梁的断裂问题。 In order to circumvent the problem arising from the ordinary and singular element in three-point and four-point bending beams with crack, a Williams element with generalized degrees of freedom (GDOFs) is presented for the calculation of stress intensity factor (SIF). The stiffness e- quation of ordinary sub-elements is developed in the singular region, and the stiffness equation of Williams element can be obtained by means of geometric series summation based on the relationship between local and global displacement field. The influence of three important parameters, including discretization ratio, number of series terms and sub-element number, is investigated and the values are determined to be α=0. 9, m=6, and n= 100. Displacements at mid-span of the beam are ana- lysed when crack grows. Example analyses show that Williams element is applicable to tacklecracked beams and has a higher accuracy and faster convergence compared to singular elements in commercial FEM code.
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2013年第4期810-816,共7页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(51168003 51209041) 广西自然科学基金资助项目(2012GXNSFEA053002 2013GXNSFBA019257)
关键词 裂纹梁 广义参数有限元 Williams单元 应力强度因子 cracked beam generalized degrees of freedom Williams element stress intensity factor
  • 相关文献

参考文献13

二级参考文献56

  • 1梁国平,何江衡.广义有限元方法──一类新的逼近空间[J].力学进展,1995,25(4):562-565. 被引量:22
  • 2崔玉红,秦庆华.混合Trefftz有限元法反平面断裂问题的探讨[J].固体力学学报,2006,27(2):167-174. 被引量:2
  • 3WESTERGAARD H M. Bearing pressure and cracks [J]. Journal of Applied Mechanics, 1939, 6:49-53
  • 4IRWIN G R. Analysis of stresses and strains near the end of a crack traversing a plate[J]. Journal of Applied Mechanics, 1957,24 : 361-364.
  • 5WILLIAMS M L. Stress singularities resulting from various boundary conditions in angular corners of plates in extension[J]. Journal of Applied Mechanics, ASME,1952,19:526-528.
  • 6WILLIAMS M L. The stress distribution at the base of a stationary eraek[J]. Journal of Applied Mechanics, ASME, 1957,24 : 109-114.
  • 7TONG P, PIAM T H H, LASRY SJ. A hybrid element approach to crack problems in plane elasticity [J]. International Journal for Numerical Methods in Engineering, 1973,7 : 297-308.
  • 8DAUX C, MOES N, DOLBOW J, et al. Arbitrary branched and intersecting cracks with the extended finite element method[J]. International Journal of Numerical Methods in Engineering, 2000,48 : 1741- 60.
  • 9XIAO Q Z, KARIHALOO B L, LIU X Y. Direct determination of SIF and higher order terms of mixed mode cracks by a hybrid crack element[J]. International Journal of Fracture, 2004,125 : 207-225.
  • 10BARSOUM R S. The use of isoparametric finite elements in linear fracture mechanics[J]. International Journal for Numerical Methods in Engineering, 1976,10:25-37.

共引文献17

同被引文献29

  • 1龙晓鸿,张澄,张青军,金祥月.含多裂纹沥青路面的动力响应分析[J].岩土力学,2011,32(S2):250-255. 被引量:3
  • 2解德,钱勤,李长安.断裂力学中的数值计算方法及工程应用[M].北京:科学出版社,2009.18-20.
  • 3LIU G R, DAI K Y, NGUYEN T T. A smoothed finite element method for mechanics problems[J]. Computational Mechanics, 2007, 39(6):859-877.
  • 4LIU G R, NGUYEN T T, DAI K Y, et al. Theoretical aspects of the smoothed finite element method(SFEM)[J]. International Journal for Numerical Methods in Engineering, 2007, 71(8):902-930.
  • 5LIU P F, HOU S J, CHU J K, et al. Finite element analysis of postbuckling and delarnination of composite laminates using virtual crack closure technique[J]. Composite Structures, 2011, 93(12):1549-1560.
  • 6RYBICKI E F, KANNINEN M F. A finite element calculation of stress intensity factors by a modified crack closure integral[J]. Engineering Fracture Mechanics, 1977, 9(4):931-938.
  • 7SHIVAKUMAR K N, TAN P W, NEWMAN J C. A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies[J]. International Journal of Fracture, 1988, 36(3):43-50.
  • 8XIE D, SHERRILL B, BIGGERS J. Progressive crack growth analysis using interface element based on the virtual crack closure technique[J]. Finite Elements in Analysis and Design, 2006, 42(11):977-984.
  • 9RAMSAMOOJ D V,LIN G S. Stress at joints and cracks in highway and airport pavement [ J ]. Engineering Fracture Me- chanics, 1999,60(6) :507-518.
  • 10Applied Research Associates. Guide for mechanistic empirical design of new and rehabilitated pavement structures [ R ]. Washington DC: Transportation Rwsearch Board, 2004.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部