期刊文献+

基于粒子群算法的PID神经网络解耦控制 被引量:6

PID Neural Network Decoupling Control Based on Particle Swarm Optimization
下载PDF
导出
摘要 基于粒子群的优化算法具有对整个参数空间进行高效并行搜索的特点以及PID神经网络的自调节和自适应特性,设计了具有PID结构的多变量自适应神经网络控制器。该算法采用粒子群算法优化PID神经网络初始权值,并将优化后的最优初始权值控制非线性耦合系统。系统仿真结果表明,粒子群优化后的PID神经网络控制器具有逼近控制目标更快、响应时间较短的显著优点。该控制策略可在大范围内克服系统的非线性和强耦合问题,具有一定的理论研究价值和工程实用价值。 The automatic control of such a system is a research focus in the process control area. A multivariable adaptive PID Artificial Neural Network (ANN) controller was introduced, which was based on the characteristics of Particle Swarm Optimization (PSO) algo- rithm searching the parameter space concurrently and efficiently, and the self-regulation and adaptability of PID artificial neuron net- works. Utilize the PSO to optimize the initial weight value of PID neural network, successfully achieve the control strategy of a nonlinear coupling system using the improved PID neural network with those obtained from the original PID neural network. The new control strate- gy could overcome nonlinear and strong coupling features of the system in a wide range and is expected to have certain theoretical and en- gineering application value.
出处 《计算机技术与发展》 2013年第9期158-161,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(61105082)
关键词 粒子群算法 PID控制 解耦控制 多变量系统 PSO algorithm P1D control decoupling control multivariable system
  • 相关文献

参考文献11

二级参考文献48

共引文献312

同被引文献63

  • 1吴道平,鄢波,刘冬,肖志怀.适用于水电机组的改进滑模控制策略研究[J].水力发电学报,2020,39(10):82-91. 被引量:16
  • 2胡建秀,曾建潮.微粒群算法中惯性权重的调整策略[J].计算机工程,2007,33(11):193-195. 被引量:62
  • 3刘胜,方亮,葛亚明,傅荟璇.船舶航向GA-PID自适应控制研究[J].系统仿真学报,2007,19(16):3783-3786. 被引量:13
  • 4Dai Chaohua, Zhu Yunfang, Chen Weirong. Seeker opti-mization algorithm [ C ]. Guangzhou : Inter. Conf. Compu-tational Intelligence and Security, 2006 : 225 -229.
  • 5Shi Y, Eberhart R. A modified particle swarm optimizer[C]. In: IEEE World Congress on Computational Intelli-gence ,1998:69 -73.
  • 6MOHANDES M A. Modeling global solar radiation usingparticle swarm optimization ( PSO ) [ J ] . Solar Energy,2012,86(1) : 3137-3145.
  • 7AL-GEELANI N A, PIAH MAM, ADZIS Z, et al. Hybridregrouping PSO based wavelet neuralnetworks for character-ization of acoustic signalsdue to surface discharges on H. V.glass insulators [ J ]. Applied Soft Computing, 2013, 13(12): 4622-4632.
  • 8CHIOUJ S, TSAI S H,LIU Mingtang. A PSO-based a-daptive fuzzy PID-controllers [ J ]. Simulation ModellingPractice and Theory, 2012,26; 49-59.
  • 9BOUALLfcGUES, HAGGGE J, AYADI M, et al. PID-type fuzzy logic controller tuning based on particle swarmoptimization [ J ] . Engineering Applications of Artificial In-telligence, 2012,25(3) : 484-493.
  • 10RATNAWEERAA,HAIGAMUGE S K, WATSON H C.Self-organizing hierarchical particle swarm optimizer withtime-varying acceleration coefficients [ J ]. IEEE Transac-tions on Evolutionary Compution, 2004,8(3) : 240-255.

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部