期刊文献+

前馈神经网络在水泥胶结识别中的应用 被引量:2

Application of Feedforward Neural Network in Cement Bond Identification
下载PDF
导出
摘要 为了解决石油测井中水泥胶结质量识别误差较大的问题,采用八扇区水泥胶结测井仪进行声幅测量。仪器灵敏度变化以及泥浆对声信号的衰减所引起的误差可以综合利用首波幅度信息对其消除。通过对非线性连接权的神经网络方法的研究和阐述,克服了传统的BP学习算法过程中难以跳出局部极小值与收敛速度慢的缺点,使其具有3层BP网络的功能且提高了运行速度,优于统计识别方法。实验表明,前馈神经网络方法的应用可识别水泥胶结质量,识别正确率远高于相对幅度法,效果显著。 In order to solve the problem of big unavoidable error in cement bond logof oil casing-well engineering, the eight segmented cement bond tool is adopted to measure sonic amplitude. Comprehensive utilization of the first wave of amplitude information eliminates the inevitable errors caused by the mud on the attenuation of the acoustic signal, as well as changes in instrument sensitivity. The method of artificial neural network (ANN) with nonlinear connected weights superior to that of statistics theory is studied, which can replace three-layer error back-propagation (BP) algorithm, so the implied-layer removed, the calculating simplified, and the operated speed in- creased. Actual application example shows that the method of ANN can identify cement quality, the identification accuracy rate is much better than that of amplitude-compare method,and the application effect is very notable.
出处 《计算机技术与发展》 2013年第9期223-226,共4页 Computer Technology and Development
基金 国家科技重大专项(2011ZX05020-007)
关键词 前馈神经网络 八扇区水泥胶结测井 胶结质量 feedforward neural network SBT cement quality
  • 相关文献

参考文献9

  • 1楚泽涵.声波测井原理[M].北京:石油工业出版社,1989.129-146.
  • 2夏竹君,郭栋,蔡霞,夏蕃,刘星普.SBT扇区水泥胶结测井仪在中原油田的应用[J].天然气技术,2007,1(2):43-45. 被引量:11
  • 3赵晨光,申梅英,王祥,柳晓英.SBT固井质量测井技术及应用[J].断块油气田,2010,17(2):253-256. 被引量:3
  • 4张柏元,赖学军,夏克文.应用BP神经网络方法区分油水层[J].石油仪器,2002,16(2):30-32. 被引量:12
  • 5王柏祥,陆生勋,陆系群.带有非线性连接权的学习网络[C]//第三届全国神经网络学术论文集.西安:西安电子科技大学出版社,1993:322-323.
  • 6Haykin S.Neural Networks: A Comprehensive Foundation[M].2nd ed.[ s.1.] :Prentice Hall Books,2006: 109-178.
  • 7Hagan M T,Demuth H B,Beale M H.Neural Network Design[M].[s.l.]: [s.n.],2002:207-226.
  • 8Sjoberg J,Ljung L.Overtraining,regularization and searchingfor a minimum,with application to neural networks[ J].Inter-national Journal of Control,1995 ,62(6):1391-1407.
  • 9Wang Baixiang,Learning Algorithm of Nonlinear LinkingWeight [ J].Journal of Hangzhou University( Natural Sci-ence),1995 ,22( Sup):46-47.

二级参考文献5

共引文献29

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部