期刊文献+

基于Adaboost算法的车辆轮胎检测研究与实现

Research and Realization on Vehicle Tire Detecting Based on Adaboost Algorithm
下载PDF
导出
摘要 为了更有效地对路段车流的车型进行分类统计,可通过测量车辆轴距的方法实现归类。提出了一种基于Adaboost算法,利用OpenCV视觉库对摄像机采集的车辆图片进行轮胎识别的检测方法。其基本思想是建立轮胎样本和级联分类器,利用被训练成的强分类器对摄像机采集的视频截图进行目标车辆轮胎的检测,然后通过检测结果计算出车辆两个轮胎之间的距离参数,从而求出轴距以确定其车型。通过分析检测出来的轮胎图案,发现存在较高的漏检率和错检率。最后,通过调整样本结构,发现大幅提高了检测准确率。 In order to undertake classification statistic to the traffic stream of space interval efficiently,it can be realized by measuring the wheelbase. A detection method of the tire identification based on Adaboost algorithm was proposed, using the OpenCV visual library on the vehicle images taken by the camera. The basic idea is to establish the vehicle tire samples and the cascade classifier,then to detect the vehicle tire from the video screenshots which taken by the camera with the strong classifier after training. Calculating the distance parame- ter by the detection results and obtaining the wheelbase to determine its models are the final steps. By analyzing the fire patterns detected, it is found that there is a high missing rate and false rate. Finally, the detection accuracy rating can be improved significantly by adjusting the sample structure.
作者 胡顾飞 严毅
出处 《计算机技术与发展》 2013年第9期227-229,233,共4页 Computer Technology and Development
基金 安徽省自然科学基金(1208085QF123) 安徽省高等学校自然科学基金(KJ2012Z084)
关键词 轴距 ADABOOST算法 OPENCV 轮胎检测 wheelbase Adaboost algorithm OpenCV tire detection
  • 相关文献

参考文献11

二级参考文献97

  • 1张玲,郭磊民,何伟,陈丽敏.一种基于最大类间方差和区域生长的图像分割法[J].信息与电子工程,2005,3(2):91-93. 被引量:27
  • 2李宏,杨廷梧,任朴舟,李朝晖.基于光流场技术的复杂背景下运动目标跟踪[J].光电工程,2006,33(10):13-17. 被引量:16
  • 3Shao Yi Chien,Shyh Yih Ma,Liang Gee Chen. Efficient Moving Object Segmentation Algorithm Using Background Registration Technique[J].IEEE Trans Circuits and Systems for Video Technology,2002;12(7):577~586
  • 4Gunilla Borgefors. Distance Transformations in Digital Images[J].Computer Vision, Graphics, and Image Processing, 1986; 34: 344~371
  • 5Yang M H, Kriegman D,Ahuja N. Detecting faces in images:a survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),2002,24 (1):34 -58.
  • 6Jones M J, Rehg J M. Statistical color models with application to skin detection. Technical report, Cambridge Res. Lab. Compaq Computer Corp, 1998.
  • 7Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-Rigid Objects using MeanShift. IEEE Conf. Computer Vision and Pattern Recognition ( CVPR00 ) , Hilton Head Island, South Carolina, 2000,2 : 142 - 149.
  • 8Comaniciu D, Ramesh V. Robust Detection and Tracking of Human Faces with an ActiveCamera. IEEE Int. Workshop on Visual Surveillance, Dublin, Ireland ,2000 : 11 - 18.
  • 9Hsu RL,Abdel-Mottaleb M,A K Jain. Face detection in color images. IEEE Trans. Pattern Analysis and Machine Intelligence ,2002,24 (5) : 696 - 706.
  • 10Freund Y,Schapire R E. Experiments with a new boosting algorithm. Proc of the 13-th Conf on Machine Learning. Bari, Italy : Morgan Kaufmann, 1996 : 148 - 156.

共引文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部