期刊文献+

一类多目标半无限规划的最优性条件 被引量:1

Optimality in Multiobjective Semi-Infinite Programming Involving Symmetrically Differentiable (F,β,ρ,d)-V-Pseudo-Univex Function
下载PDF
导出
摘要 利用对称梯度,给出一类新的对称可微(F,β,ρ,d)-V-伪凸函数,在新的广义凸函数的约束下,讨论了一类多目标半无限规划问题,得到涉及这类多目标半无限规划的最优性条件. A class of new symmetrically differentiable(F,β,ρ,d)-V-pseudo-univex function are provided,with which the optimality conditions for a class of multiobjective semi-infinite programming is obtained.
作者 王荣波
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2013年第4期383-386,共4页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10901128) 陕西省教育厅科研基金项目(12jk0867) 延安大学科研基金项目(YD2010-09)
关键词 多目标半无限规划 对称可微(F β ρ d)-V-伪凸函数 有效解 multiobjective semi-infinite programming symmetrically differentiable(F,β,ρ,d)-V-pseudo-univex efficient solution
  • 相关文献

参考文献15

  • 1Kaul R N,Kaur S. Generalizations of convex and related functions[J]. EuropeanJournal of Operations Research,1982, 9: 369-377.
  • 2Antczak T. A new approach to multiobjective programming with a modified objective function[J].Journal of Global Optimization, 2003,27: 485-495.
  • 3Ahmad I. Sufficiency and duality in multiobjective programming with generalized (F,p)-convexity[J].Journal of Math?ematical Analysis and Applications, 2005 (11) : 19-32.
  • 4Antczak T. A modified objective function method for solving nonlinear multiobjective fractional programming problems[J].Journal of Mathematical Analysis and Applications. 2006,322: 971-989.
  • 5Jayswal A, Ahmadb I, Al-Homidanb S. Sufficiency and duality for non smooth multiobjective programming problems involving generalized (F,a ,p,8) -d- V-univex functions[J]. Mathematical and Computer Modelling, 20 11 ,53: 81-90.
  • 6Minch R A. Application of symmetric derivatives in mathematical programming[J]. Mathematical Programming, 1971(1):307-320.
  • 7Zheng XJ , Cheng L. Minimax fractional programming under nonsmooth generalized (F, p, 8) -d -univexity[J].Journal of Mathematical Analysis and Applications, 2007 ,328: 676-689.
  • 8Tong Zv Zheng XJ. Generalized (F,a,p,8)-d-V-univex functions and nonsmooth alternative theorems[J].Journal of Computer Mathematics, 2010,87: 158-172.
  • 9Gulati T R, Agarwal D. Sufficiency and duality in nonsmooth multiobjective optimization involving generalized (F,a,1r,d)-Type I functions[J]. Computers and Mathematics with Applications,2006,52:81-94.
  • 10Liang Z A, Huang H X,Pardalos P M. Optimality conditions and duality for a class of nonlinear fractional programming problems[J].Journal of Optimization Theory and Applications, 2001,110: 611-619.

二级参考文献2

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部