期刊文献+

遗传算法优化BP神经网络研究

Study on Genetic Algorithm Optimization and BP Neural Networks
下载PDF
导出
摘要 研究了遗传算法优化BP神经网络隐含层节点数,从而使BP神经网络具有更快的收敛性和更强的学习能力. The Artificial Neural Net mind, possesses the strong learning (ANN) 's a way to deal with the information by simulating the human being's functionality and nonlinear reflection ability. BP nerve network is the core part of the feed - forward neural networks, but there are also some problems such as it is low rate of convergence, is lia- ble to trap in minimum value, and is difficult to decide the number of hidden layer nodes. Using the global search mechanism of the genetic algorithm, this article studies the genetic algorithm optimization and BP neural networks hidden layer nodes, to make the BP neural networks own faster astringency and stronger learning functionality.
作者 范巧艳
出处 《西安职业技术学院学报》 2013年第2期50-52,共3页 Research on Vocational Education in Xi'an Vocational and Technical College
关键词 人工神经网络 遗传算法 BP神经网络 Artificial Neural Net (ANN) genetic algorithm BP neural networks
  • 相关文献

参考文献5

  • 1Yao X. Evolving Artificial Neural Networks [J]. Proc IEEE, 1999, 87(9): 1423 -1447.
  • 2]雷英杰,张善文等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005,22-29.
  • 3llumelhart D E, et al. Learning Representation by BP Errors [J]. Nature (London), 1986(7) :149 -154.
  • 4Fletcher R, et al. Funetion Minimization by Conjugate Gradients [ J ]. Computer Journal, 1964 (7) :533 -536.
  • 5Patrick P, et al. Minimization Method for Training Feedforward Neural Networks [ J]. Neural Networks, 1994(7) :1 -11.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部