期刊文献+

聚合物太阳能电池的电特性扫描探针显微技术

Nanoscale structure and electrical properties of polymer solar cells studied by electric scanning probe microscopy
原文传递
导出
摘要 聚合物太阳能电池(polymer solar cells,PSC)因其柔性、易加工性等特点成为目前新能源领域研究的热点之一.扫描探针显微技术(scanning probe microscopy,SPM)在高分辨形貌表征和电特性表征方面具有独特优势,近年来在PSC研究领域的应用逐渐受到广泛关注.本文综述了近年来利用SPM技术在纳米尺度研究PSC活化层的形貌、相分离、电荷分离、电势分布等的新进展,分别介绍静电力显微技术(electric force microscopy,EFM)、导电原子力显微技术(conductive atomic force microscopy,C-AFM)、开尔文探针力显微技术(Kelvin probe force microscopy,KPFM)等在PSC活化层的结构和局域电学特性表征中的应用,并对电特性扫描探针显微技术(electric SPM,ESPM)在PSC及其他具有光电特性的薄膜、器件等研究领域的应用前景进行了展望. Polymer solar cell (PSC) has drawn much attention in the energy field for its flexibility and processability. Scanning probe microscopy (SPM) is a powerful tool in characterizing morphology and electrical property at high special resolution, and has been attracting broad interest in this field. In this paper, we summarized the recent progress in applications of electric SPM (ESPM) in PSC investigations, including the nanoscale morphology, phase separation, charge separation and potential distribution. We introduce the principles of the ESPM techniques first, including electric force microscopy (EFM), conductive atomic force microscopy (C-AFM) and Kelvin probe force microscopy (KPFM), and then discuss their concrete applications in characterizing the local structural and electric properties of PSC film. A perspective is also discussed on the future applications of ESPM in PSC and other related opto-electric films and devices.
出处 《科学通报》 CAS CSCD 北大核心 2013年第24期2398-2410,共13页 Chinese Science Bulletin
基金 国家自然科学基金(20973043,21077062) 科技部中英合作项目(2010DFA64680) 山东省自然科学基金(ZR2012FZ007)资助
关键词 聚合物太阳能电池 有机太阳能电池 静电力显微技术 导电原子力显微技术开尔文探针力 显微技术 polymer solar cell, organic photovoltaic, electric force microscopy, conductive atomic force microscopy, Kelvin probe force microscopy
  • 相关文献

参考文献75

  • 1Brabec C J, Gowrisanker S, Halls J J M, et al. Polymer-fullerene bulk-heterojunction solar cells. Adv Mater, 2010, 22:3839-3856.
  • 2Siddiki M K, Li J, Galipeau D, et al. A review of polymer multijunction solar cells. Energ Environ Sci, 2010, 3:867-883.
  • 3Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells-enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270:1789-1791.
  • 4Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene. Science 1992, 258:1474-1476.
  • 5Hou J H, Chen H Y, Zhang S Q, et al. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J Am Chem Soc, 2008, 130:16144-16145.
  • 6Li G, Shrotriya V, Huang J S, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater, 2005, 4:864-868.
  • 7Wong W Y, Wang X Z, He Z, et al. On the efficiency of polymer solar cells. Nat Mater, 2007, 6:704-705.
  • 8Peet J, Kim J Y, Coates N E, et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater, 2007, 6:497-500.
  • 9Liang Y Y, Feng D Q, Wu Y, et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J Am Chem Soc, 2009, 131:7792-7799.
  • 10Chen H Y, Hou J H, Zhang S Q, et al. Polymer solar ceils with enhanced open-circuit voltage and efficiency. Nat Photon, 2009, 3: 649-653.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部