摘要
解释和分析了二维信号可分离度的概念.基于二维模态分解理论和二维信号解析相位理论提出了二维模态信号的加性可分离度计算式和乘性可分离度计算式,并分别利用完全加性信号和完全乘性信号对两种计算式的实际效果进行了验证.二维经验模态可分离度的应用意义体现在:它可以鉴定二维模态分解算法分解质量的优劣,可以用来确定模态分解客观分解终止条件,还可以在进行单方向特征信息提取时为预处理方法的选择提供有效依据.
The concept of bidimensional signal detachable degree is explained and analyzed.Based on the Bidimensional Empirical Mode Decomposition(BEMD)theory and the bidimensional signal analytic phase theory,this paper brought out add and product detachable degree calculation formulas for bidimensional empirical mode signal.To verify these two formulas′actual effects,we performed experiments with complete add detachable signal and complete product detachable signal.The application of bidimensional empirical mode detachable degree shows that it can identify the BEMD algorithm′s quality and has capability to determine the objective BEMD stopping criterion.It also provides an effective basis for the choice of preprocessing methods when extracting single orientation features.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2013年第7期1313-1318,共6页
Acta Electronica Sinica
基金
中国博士后科学基金资助项目(No.2012M511881)
国家自然科学基金(No.61076021
No.61102146)
关键词
二维信号可分离度
二维经验模态分解
解析相位
加性可分离度
乘性可分离度
bidimensional signal detachable degree
bidimensional empirical mode decomposition
analytic phase
add detachable degree
product detachable degree