摘要
通过对结构张量的研究和对纹理图像的分析,提出了一种基于结构张量特征值的标量型纹理特征描述,将其和原图像分别嵌入到两相模糊区域竞争模型和CV模型中,给出了一种纹理和灰度相结合的无监督纹理图像分割模型.为获得新模型的全局最优解,采用了Chambolle对偶法加以实现.针对自然和合成纹理图像进行了相关实验,结果表明该模型特征数据维数少,具有较快的收敛速度和更准确的分割效果.
Through the research on the structure tensor and the analysis of the texture image,a scalar texture feature descriptor based on eigenvalues of structure tensor is designed.Embedding the descriptor and the original image into the two-phase fuzzy region competition model and the CV model respectively,an unsupervised texture image segmentation model which combines texture with intensity information is given.The Chambolle dual method is adopted in order to minimize the optimum global solution of the new model.According to the related experiments for natural and synthetic images,the new method has some advantages including faster convergence speed due to less feature channels and more precise segmentation results.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2013年第7期1324-1328,1328,共5页
Acta Electronica Sinica
基金
"海洋机电装备技术"浙江省重中之重学科开放基金(基于特征的海洋流场可视化技术研究)
关键词
结构张量
纹理图像分割
对偶法
模糊区域竞争
structure tensor
texture image segmentation
dual method
fuzzy region competition