期刊文献+

稀疏正则化的多目标图像分割变分模型 被引量:5

Sparsity Regularized Variational Model for Multiphase Image Segmentation
下载PDF
导出
摘要 基于隶属度函数的稀疏正则化,本文提出一个新的多目标图像分割变分模型和相应求解算法.该模型和算法有以下主要优点:首先,稀疏正则可以更好地保持分割区域的边界,克服了全变差正则导致分割边界模糊的缺点.其次,利用多尺度几何分析工具可以更好地保持图像的几何形状.最后,提出算法简单、易实现、运行速度快.一系列实验结果验证了提出方法的可行性与有效性. Based on sparse regularization to the membership functions,this paper proposes a novel multiphase variational model and corresponding algorithm for image segmentation.The proposed model and algorithm has three main advantages.Firstly,the sparse regularizer performs better than total variation regularizer.It protects edges from oversmoothing which is a common drawback of the total variation regularizer.Secondly,the multi-scale geometric analysis tool well preserves geometric shape of the segmentation regions.Finally,the proposed algorithm is simple and has rapid running speed.A series of experimental results demonstrate the feasibility and effectiveness of the proposed method.
作者 李亚峰
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第7期1329-1336,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.60872138 No.61105011) 陕西省教育厅专项科研计划项目(No.12JK0550)
关键词 图像分割 稀疏表示 小波 曲线波 分裂算法 变分模型 image segmentation sparse representation wavelet curvelet splitting algorithm variational model
  • 相关文献

参考文献19

  • 1Kass M, Witlan A P, Terzopoulos D. Snakes: Active contour modelsE J]. International Journal of Computer Vision, 1988, 1 (4) :321 - 331.
  • 2CaseUes V, Kimmel R, Sapiro G. Geodesic active contours[ J ]. International Journal of Computer Vision, 1997, 22 ( 1 ) : 61 -79.
  • 3Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems [ J ]. Communications on Pure and Applied Mathematics, 1989, 42 (5) :577 - 685.
  • 4Chart T F, Vese L A. Active contours without edges[ J]. IEEE. Transactions on Image Preessing,2001,10(2):266- 277.
  • 5Vese L A, Chan T F. A multiphase level set framework for im- age segmentation using the Mumford and Shah model[ J]. Inter- national Journal of Computer Vision,2002,50(3) :271 - 293.
  • 6Bresson X,Esedoglu S,Vandergheynst P,Thiran J P,Osher S. Fast global minimization of the active contour/snake model [J]. Journal of Mathematical Imaging and Vision, 21307, 28 (2) : 151 - 167.
  • 7Chung G, Vese L. Image segmentation using a mullilayer level- set approach [ J ]. Computing and Visualization in Science, 2009,12(6) :267 - 285.
  • 8Li C,Huang R,Ding Z,Gatenby C,Metaxas D N,Gore J C.A level set method for image segmentation in the presence of in- temity inhomogeneities with application to MRI [ J ].IEEE Transactions on Image Processing,2011,20(7) :2007- 2016.
  • 9Goldstein T,Bresson X,Osher S. Geomelric applications of the split Bregman method: Segmentation and surface reconstruction [ J]. Journal of Scientific Computing,2010,45(13) :272 - 293.
  • 10Posirca L, Chen Y, Barcelos C. A new stochastic variational PDE model for soft Mumford-Shah segmentation[ J] .Journal of Mathematical Analysis and Applications, 2011,384(1) : 104 - 114.

二级参考文献89

  • 1姜东焕,冯象初,宋国乡.基于非线性小波阈值的各向异性扩散方程[J].电子学报,2006,34(1):170-172. 被引量:15
  • 2孙晓丽,宋国乡,冯象初.基于噪声-纹理检测算子的图像去噪方法[J].电子学报,2007,35(7):1372-1375. 被引量:4
  • 3[5]Stephane Mallat.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 4[1]EJ Candes. Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
  • 5[2]E J Candes. Monoscale Ridgelets for the Representation of Images with Edges[ R]. USA: Department of Statistics, Stanford University, 1999.
  • 6[3]Candes E J, D L Donoho. Curvelets[R]. USA: Department of Statistics,Stanford University, 1999.
  • 7[4]E L Pennec, S Mallat. Image compression with geometrical wavelets[A]. In Proc. of ICIP' 2000 [ C ]. Vancouver, Canada, September,2000.661-664.
  • 8[5]M N Do, M Vetterli. Contourlets[ A ] .J Stoeckler, G V Welland. Beyond Wavelets [ C ]. Academic Press, 2002.
  • 9[7]D L Donoho,M Vetterli,R A DeVore, I Daubechies. Data compression and harmonic analysis [ J ]. IEEE Trans, 1998, Information Theory-44(6) :2435 - 2476.
  • 10[8]M Vetterli. Wavelets, approximation and compression [ J ]. IEEE Signal Processing Magazine,2001,18(5) :59 - 73.

共引文献249

同被引文献43

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2Zhuang H, Low K, Yau W. Multichannel pulse coupled neural network based color image segmentation for object detection[J]. IEEE Transactions on Industrial Electron- ics, 2012,59(8) : 3299 - 3308.
  • 3刘勃.基于脉冲耦合神经网络的图像处理若干问题研究[D].西安:西安电子科技大学,2011:70-77.
  • 4Liu Min, Mao Jianxu. Traffic signs recognition based on affine invariant Hu' s moment features [ J ]. Applied Me- chanics and Materials, 2013(322/323) :945 949.
  • 5冯占国,徐玉如.基于不变性特征的水下目标特征提取[J].哈尔滨工程大学学报,2007,28(12):1343-1347. 被引量:6
  • 6Vese L A, Chan T F. A multiphase level set framework for im- age seTnentation using the Mumford and Shah model[ J]. Inter- national Journal of Computer Vision, 2002,50(3 ) : 271 - 293.
  • 7Li C, Huang R, Ding Z, Gatenby C, Metaxas D N, Gore J C. Alevel set method for image segmentation in the presence of in- tensity inhomogeneities with application to MRI[ J]. IEEE Trans Image Processing, 2011,20(7) : 2(X7 - 2016.
  • 8Yoon M J, Sung H K, Shen J H. Multiphase image segmenta- tion via Modica-Mortola phase transition [ J ]. SIAM Journal of Applied Mathematics, 2007,67 (5) : 1213 - 1232.
  • 9Mory B, Ardon R. Fuzzy region phase gmentation framework[ A] competition: A convex two International Conference on Scale Space Metho&s and Variational Methods in Computer Vi- sion[C]. Ischia, Italy: Springer Berlin Heidelberg, 2007. 214 - 226.
  • 10Li F, Ng M K, Zeng T Y, Shen C L. A multiphase image seg- mentation method based on fuzzy region competition[ J]. SIAM J Imaging Sciences,2010,3(3) :277 - 299.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部