广义对称双随机矩阵逆特征值问题
摘要
文章利用实对称矩阵特征值与特征向量所具有的特性,给出了以实数集为谱的广义对称双随机矩阵逆特征值问题有解的几个充分条件和解的表达形式,并以二元、三元、四元实数集为例,说明了具体构造解的方法。
出处
《荆楚理工学院学报》
2013年第2期49-52,共4页
Journal of Jingchu University of Technology
参考文献6
-
1Linzhang Lu, Michael K Ng. On sufficient and necessary conditions for the Jacobi inverse eigenvalue problem [ J ]. Numer. Math. ,2004(98) :167 - 176.
-
2Reams R. An inequality for nonnegative and the inverse eigenvalue problem [ J ]. Linear Multilinear Algebra, 1996 (41) :367 - 375.
-
3Laffey T, Meehan E. A characterization of trace zero nonnegative 5 x 5 matrices [ J ]. Linear Algebra Appl. , 1999 ( 302/303 ) : 295 - 302.
-
4雷英杰,徐伟孺.广义行随机矩阵的逆谱问题[J].安徽大学学报(自然科学版),2012,36(5):1-5. 被引量:2
-
5沈光星.广义随机矩阵的特征值分布[J].工程数学学报,1991,8(1):111-115. 被引量:2
-
6Berman A, Plemmons R J. Nonnegative matrices in the mathematical sciences [ M ]. New York:Academic Press, 1979.
二级参考文献18
-
1Chu M T, Golub G H. Inverse eigenvalue problems: theory, alogrithms and applications [ M ]. New York: Oxford University Press ,2005.
-
2Marijuan C, Pisonero M, Soto R L. A map of sufficient conditions for the real nonnegative inverse eigenvalue problem [ J ]. Linear Algebra Appl,2007,426 : 690-705.
-
3Egleston P D, Lenker T D, Narayan S K. The nonnegative inverse eigenvalue problem [ J ]. Linear Algebra and its Applications, 2004,379:475 -490.
-
4Liu Z B, Lu L Z, Wang K M. The inverse eigenvalue problem of generalized reflexive matrices and its approximation [J]. Applied Mathematics and CompUtation,2011,218:1611-1616.
-
5Zhou F Z. The solvability conditions for the inverse eigenvalue problems of reflexive matrices [ J ]. Journal of Computational and Applied Mathematics,2006,188 : 180-189.
-
6Zhu S X, Gu T X, Liu X P. Solving inverse eigenvalue problems via Householder and rank-one matrices [J]. Linear Algebra and its Applications,2009,430 : 318-334.
-
7Hwang S G, Pyo S S. The inverse eigenvalue problem for symmetric doubly stochastic matrices [ J ]. Linear Algebra and its Applications ,2004,379:77-83.
-
8Soto R L. On the comparison of some realizability criteria for the real nonnegative inverse eigenvalue problem [ J ]. Linear Algebra and its Application,2005,396:223-241.
-
9Soto R L, Rojo O. Applications of a Brauer theorem in the nonnegative inverse eigenvatue problem [ J ]. Linear Algebra and its Application,2006,416:844-856.
-
10Johnson C R. Row stochastic matrice similar to doubly stochastic matrice[ J]. Linear and Muhilinear Algebra,1981, 10:113-130.
-
1付遵涛,刘式适,刘式达.非线性波方程求解的新方法[J].物理学报,2004,53(2):343-348. 被引量:45
-
2梁海生,严雯,倪新蕾.用系统观组织物理实验课程教学[J].中山大学学报论丛,2001,21(1):106-107.
-
3廖森.均匀设计在调优试验设计中的应用[J].广西大学学报(自然科学版),2002,27(4):293-297. 被引量:10
-
4周应兵.基于马尔可夫过程的控制系统可靠性分析[J].山东交通学院学报,2005,13(1):7-10. 被引量:11
-
5李进,涂国平,贾仁安.SD流率基本入树建模法反馈环计算的计算机设计与实现[J].统计与决策,2007,23(8):131-133.
-
6曹仲文,袁惠新.旋流反应器中液滴破碎及变形的研究[J].机械工程师,2012(12):3-4. 被引量:2
-
7刘敏时,王晓曼,景文博,王斌.用于激光光束检测的夏克-哈特曼传感器参量设计[J].光学学报,2013,33(3):295-299. 被引量:4
-
8翟文超,徐骏,郑小兵,丁蕾,陆俊桦.应用于超光谱定标的光谱可调光源光学设计[J].红外与激光工程,2014,43(3):950-955. 被引量:3