摘要
为了克服传统粒子群算法(PSO)的早熟和局部最优问题,通过分析基于惯性权重的粒子群优化在粒子寻优过程中的可行性,提出了一种变惯性权重的改进PSO算法,并对经典的测试函数进行了测试。实验结果证明,与传统PSO算法以及基于惯性权重的PSO相比,改进算法的寻优效果较好,全局搜索能力有显著提高,并能有效地避免早熟收敛问题。
In order to overcome the problems of the immmture and local optimization in traditional PSO, based on the inertia weight PSO and the limited particle optimization process, a variation of inertia weight improved PSO algorithm is proposed, with classic test functions. And the results prove that improved algorithm optimization is better in global search capability and pmature convergence prevention than the tra- ditional P~ algorithm and the inertia- weight- based PSO.
出处
《广东石油化工学院学报》
2013年第4期75-78,共4页
Journal of Guangdong University of Petrochemical Technology
基金
广东高校石油化工故障诊断与信息化控制工程技术开发中心开放基金
关键词
粒子群优化算法
局部最优
群体智能
算法设计
Particle Swarm Optimization algorithm (PSO algorithm)
local optimum
swarm intelligence
algorithm design