期刊文献+

具有时滞分段常数变量与干扰比率模型的分支分析 被引量:1

Bifurcation analysis of the model with time-delay,piecewise constant variables and interference
下载PDF
导出
摘要 为讨论具有时滞、干扰和分段常数变量的单种群比率密度制约模型的稳定性,Neimark-Sacker分支的存在性以及稳定性。利用特征值理论和Jury判据给出模型正平衡态局部渐近稳定的充分条件及分支参数范围,基于规范化理论及中心流形定理,研究了分支的方向及稳定性;通过实例与数值模拟验证所得结论的正确性、可实现性和模型复杂的动力学行为。 The stability and Neimark-Sacker bifurcation of a single population of ratio density-dependent model with time delay, intererence and piecewise constant variables are investigated. The local stability sufficient condition and the range of the parammeter for existence of Neimark-Sacker bifurcation of this model are derived by using the theory of characteristic value. Furthermore, the direction and stability of N-S bifurcation are derived by using the bifurcation theory and the center manifold theorem. Finally, some examples and numerical simulations are presented to illustrate the correctness and realizability of the theoretical results and the complex dynamical behaviors of this model.
作者 陈斯养 靳宝
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期517-523,共7页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10871122 11171199) 中央高校基本科研专项基金资助项目(JK201302004 JK201302006)
关键词 分段常数变量 时滞 稳定性 N—S分支 piecewise constant variables time delay stability N-S bifurcation
  • 相关文献

参考文献9

  • 1陈斯养,李方.具有干扰的捕食与被捕食模型的定性分析[J].西北大学学报(自然科学版),2009,39(6):921-924. 被引量:2
  • 2GOPALSAMY K, LIU Ping-zhou. Persistence and global stability in a population model [ J ]. J Math Anal Appl, 1998,224( 1 ) :59-80.
  • 3LIU Ping-zhou, GOPALSAMY K. Global stability and chaos in a population model with piecewise constant argu- ments [ J ]. Appl Math Comput, 1999,101 ( 1 ) : 63-88.
  • 4GURCAN F, BOZKURT F. Global stability in a popula- tion model with pieeewise constant arguments [ J ]. J Math Anal Appl,2009,360( 1 ) :334-342.
  • 5OZTURK I, BOZKURT F. Stability analysia of a popula- tion model with pieeewise constant arguments [ J ]. Nonlin- ear Analysis : Real World Applications, 2011, 12 ( 3 ) : 1532-1545.
  • 6WANG You-bin, YAN Ju-rang. Necessary and sufficient condition for the global attractivity of the trivial solution of a delay equation with continuous and piecewise constant arguments[J]. Appl Math Lett, 1997,10(5) :91-96.
  • 7Wang Youbin,Yan Jurang.NECESSARY AND SUFFICIENT CONDITIONS FOR THE OSCILLATION OF A DELAY LOGISTIC EQUATION WITH CONTINUOUS AND PIECEWISE CONSTANT ARGUMENTS[J].Annals of Differential Equations,2005,21(3):435-438. 被引量:4
  • 8JURY E I. Inners and Stability of Dynamic Systems [ M ]. New York: Wiley, 1974.
  • 9YURI A K. Elements of Applied Bifurcation Theory[ M]. New York : Springer-Verlag, 1998.

二级参考文献8

  • 1贺云,陈斯养.广义特征方程及正解的存在性[J].云南师范大学学报(自然科学版),2006,26(1):6-10. 被引量:2
  • 2陈兰孙.数学生态学模型与研究方法[M].北京:科学出版社,1998:114-119.
  • 3HE Y, CHEN Si-yang. The Qualitative Analysis a Class of Two Species Predator-Prey Perturbed Model [ C ] //Proceeding of the 3^rd International Conference on Impulsive Dynamic Systems and Applications,2006:383-385.
  • 4戴国仁.Kolmogorov捕食者一食饵系统的定性分析.应用数学学报,1988,11(4):444-456.
  • 5CAO Xian-tong,CHEN Lan-sun. A note on the uniqueness of limit cycles in two species Predator-prey system [ J]. Ann of Diff Eqs,1986,2(4) :415-417.
  • 6ZHANG Zhi-fen. Proof of the uniqueness theorem of limit cycles of generalized Lienard equation [ J ]. Appl Anal, 1986,23:63-76.
  • 7张锦炎.冯贝叶.常微分方程几何理论与分支问题[M].北京:北京大学出版社,2002.
  • 8Youbin Wang,Jurang Yan.A Necessary and Sufficient Condition for the Oscillation of a Delay Equation with Continuous and Piecewise Constant Arguments[J].Acta Mathematica Hungarica.1998(3)

共引文献4

同被引文献15

  • 1杨颖茶,陈斯养.一类二阶非自治时滞微分方程的线性振动[J].陕西科技大学学报(自然科学版),2006,24(5):119-123. 被引量:2
  • 2陈兰荪,宋新宇,陆征一.数学生态学模型与研究方法[M].成都:四川科学技术出版社,2008,8.
  • 3Kot M. Elements of mathematical ecology[M]. London: The Cambridge University Press, 2001.
  • 4R. M. May. Biological population obeying difference equa- tion:stable points, stable cycles and chaos[J]. Journal of Theoretical Biology,1975,51(2) :511-524.
  • 5R. M. May, Oster G F. Bifurcation and dynamics corn plexity in simple ecological models[J]. The American Naturalist, 1976,110(974) : 573-579.
  • 6Gopalsamy K,Pingzhou Liu. Persistence and global sta- bility in a population model[J]. Journal of Mathematical Analysis and Applications, 1998,224 ( 1 ) : 59-80.
  • 7Kocic V L , Ladas G. Global behavior of nonlinear differ- ence equation of higher order with application[M]. Ox ford : Oxford University Press, 1991.
  • 8J. Guckenheimer, P. Holmes. Nonliner oscillations, dy- namical systems and bifurcations of vector fields [M]. New York: Springger-Verlag, 1983.
  • 9Gopalsamy K. Stability and oscillation in delay difference equation of population dynamics[M]. Dodrecht: Kluwer Academic Publishers, 1992.
  • 10Gurcan F, Bozkurt F. Global stability in a population model with piecewise constant arguments[J]. Journal of Mathematical Analysis and Applications, 2009,360 ( 1 ): 334-342.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部