期刊文献+

发酵制氢废液的微生物电解池产氢 被引量:6

Hydrogen production via single-chamber microbial electrolysis cell fed with fermentation effluent
下载PDF
导出
摘要 采用单室微生物电解池(MEC)反应器为实验装置,通过预处理技术强化发酵制氢废液中乙酸的积累,并将该发酵废液作为底物,考察了以废液中累积的乙酸作为主要电子供体、碳布为阳极、涂布有Ni纳米颗粒的不锈钢网为催化阴极的产氢效果。结果表明,在MEC中,以预处理的发酵制氢废液积累的乙酸为底物,最高产氢率可达(1.31±0.04)m3H2/(m3.d)和(2.78±0.11)mLH2/mgCOD,同时可获得138.6%±3.1%的能量效率和99.0%±0.3%的COD去除率。实验表明,利用MEC可将发酵末端产物进一步降解,从而减弱了"发酵障碍"现象,实现了治污和产能的统一。 This research used a single chamber microbial electrolysis cell ( MEC ) as the reactor to treat the pretreated fermentation effluent rich in acetic acid to produce hydrogen. The accumulated acetic acid was chosen as the main electron donor, with carbon cloth as the anode and the stainless steel wire mesh coated with Ni nanoparticles as the catalyst. The experimental results showed that in the MEC fed by the fermentation effluent reached a maximum hydrogen yield of (1.31±0.04) maH2/(ma.d)and (2.78±0.11) mLHE/mgCOD, and energy efficiency of 138.6%±3.1% with COD removal of 99.0%±0.3%. This research also revealed that MEC could degrade the liquid end-products spontaneously and decrease the "fermentation barrier" to realize production control and energy product.
出处 《化工进展》 EI CAS CSCD 北大核心 2013年第6期1435-1438,1456,共5页 Chemical Industry and Engineering Progress
基金 国家自然科学基金(21276248 50808152) 中国科学院知识创新工程重要方向项目(KZCX2-EW-402-02) 福建省科技计划重点项目(2012Y0069)
关键词 乙酸 发酵障碍 微生物电解池 生物制氢 acetic acid fermentation barrier microbial electrolysis cell (MEC) bio-hydrogen production
  • 相关文献

参考文献20

  • 1Liu H, Grot S, Logan B E. Electrochemically assisted microbial production of hydrogen from acetate[J]. Environmental Science & Technology, 2005, 39: 4317-4320.
  • 2Logan B E, Call D, Chang S A, et al. Microbial electrolysis cells for high yield hydrogen gas production from Organic matter[J]. Environmental Science & Technology, 2008, 42 (23) : 8630-8640.
  • 3Chang S A, Logan B E. Sustainable and efficient biohydrogen production via electrohydrogenesis[J]. Proceedings of the NationalAcademy of Sciences, 2007, 104 (47) : 18871-18873.
  • 4Cheng S A, Logan B E. Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in microbial electrolysis cells (MECs)[J]. Water Science & Technology, 2008, 58 (4) : 853-857.
  • 5Liu H, Ranmarayanan R, Logan B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environmental Science & Technology, 2004, 38: 2281-2285.
  • 6Kim Y J, Lee H S, Kim E S, et al. Formate-driven growth coupled with H2 production[J].Nature, 2010, 467: 352-356.
  • 7Huang Y X, Liu X W, Sun X F, et al. A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell[J]. International Journal of HydrogenEnergy, 2011, 36: 2773-2776.
  • 8Wagner R C, Regan J M, Oh S E, et al. Hydrogen and methane production from swine wastewater using microbial electrolysis cells [J]. Water Research, 2009, 43: 1480-1488.
  • 9Wang A J, Sun D, Cao G L, et al. Integrated hydrogen prodution process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell[J]. Bioresource Technology, 2011, 102: 4137-4143.
  • 10Kiely P D, Cusick R, Call D F, et al. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters[J]. Bioresource Technology, 2011, 102: 388-394.

二级参考文献46

  • 1李光伟,刘和,云娇,李秀芬,陈坚.应用T-RFLP技术研究五氯酚对好氧颗粒污泥中细菌组成的影响[J].环境科学,2006,27(4):794-799. 被引量:17
  • 2吕凡,何品晶,邵立明,陈活虎.pH值对易腐有机垃圾厌氧发酵产物分布的影响[J].环境科学,2006,27(5):991-997. 被引量:44
  • 3Yuan HY, Chen YG, Zhang HX, et al. Improved Bioproduction of Short-chain Fatty Acids (SCFAs) from Excess Sludge under Alkaline Conditions. Environmental Science Technology, 2006,40 : 2025 - 2029.
  • 4Cai ML, Liu JX, Wei YS. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environmental Science Technology, 2004,38 : 3195 - 3202.
  • 5Ye NF, Lu F, Shao LM, Godon J J, et al. Bacterial community dynamics and product distribution during pH- adjusted fermentation of vegetable wastes. Journal of Applied Microbiology, 2007,103 : 1055 - 1065.
  • 6Oh S E, Ginkel S V, Logan B E. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environmental Science Technology, 2003, 37 : 5186 - 5190.
  • 7Logan BE, Oh SE, In SK, et al. Biological hydrogen production measured in batch anaerobic respirometers. Environmental Science Technology, 2002,36 : 2530 - 2535.
  • 8Liu XL, Liu H, Chen YY, et al. Effects of organic matters and initial carbon-nitrogen-ratio on the bioconversion of volatile fatty acids from sewage sludge. Journal of Chemical Technology and Biotechnology, 2008,83 (7) : 1049 - 1055.
  • 9国家环保局《水和废水监测分析方法》编委会.水和废水分析方法.第4版.北京:中国环境科学出版社,2002.
  • 10Yu HQ, Fang HHP. Acidogenesis of gelatin-rich wastewater in an upflow ananerobic reactor: influence of pH and temperature. Water Research, 2003,37 : 55 - 66.

共引文献49

同被引文献160

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部