期刊文献+

一种新的短波信号类型识别算法

New Algorithm of High Frequency Communication Signal Recognition
下载PDF
导出
摘要 在对具有相同调制参数的短波信号类型识别中,利用特征波形匹配识别简单有效,但容易受到短波信道低信噪比的影响,降低其有效性。文章通过提取特征波形小波模极大值特征来匹配识别,模极大值特征不仅能够提取信号的奇异点,同时由于噪声和信号模极大值的不同传播特性,可以去掉噪声模极大值,达到降噪的目的。通过仿真实验证明,小波模极大值特征能有效降低短波信道的影响,尤其是在低信噪比条件下优势突出,具有一定的工程应用价值。 Characteristic waveform matching is a simple but effective method in the recognition of high frequency (HF) communication signals with same modulation parameters, but its performance is easily affected by noise interference of HF channel. As one solution, wavelet modulus maxima characteristic is proposed to recognize HF signals. The modulus maxima characteristic is not only a- ble to extract the singular point of signals, but also can depress the noise interference through its dif- ferent propagation characteristics of the noise and signal modulus maxima. Simulation results reveal that wavelet modulus maxima can effectively reduce the impact of HF channel, especially in the low signal-to-noise conditions.
机构地区 信息工程大学
出处 《信息工程大学学报》 2013年第4期447-451,共5页 Journal of Information Engineering University
基金 国家863计划资助项目(2009ZX03006-008)
关键词 小波降噪 模极大值 短波信号 信号识别 wavelet de-noising modulus maxima high frequency signals signals recognition
  • 相关文献

参考文献7

二级参考文献44

共引文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部