期刊文献+

中立型时滞模型周期正解的一个充分条件(英文) 被引量:4

Sufficient Condition on Positive Periodic Solution for Neutral Delay Model
下载PDF
导出
摘要 研究了一类中立型时滞模型:N’(t)=N(t)[α(t)-β(t)N(t)-b(t)N(t-τ(t))-c(t)N‘(t-τ(t))]周期正解的存在性,其中α(t),β(t),b(t),c(t),τ(t)是周期T的非负连续函数.一个新的充分条件被给出,这一结果肯定的回答了文[1]的分开问题9.2. A new sufficient conditions are derived for the existence of positive periodic solution of neutral delay model of the form N'(t) = N(t)[α(t) -β(t)N(t)- b(t)N(t - τ(t))-c(t)N'(t - τ(t))] where α(t),β(t), b(f), c(f), τ(t) are nonnegative continuous T-periodic functions, and the result in this paper answer the open problem 9.2 in [1].
作者 李琼 曹进德
出处 《生物数学学报》 CSCD 2000年第1期9-20,共12页 Journal of Biomathematics
基金 The project is supported by Natural Science Foundation of Yunnan !(97A012G,1999F0017M)
关键词 中立型 时滞模型 周期正解 拓扑度 充分条件 Neutral type Delay Positive periodic solution Topological degree
  • 相关文献

参考文献6

  • 1[1]Kuang Y. Delay Differential Equations with Applications in Population Dynamics[M]. New York: Academic press, 1993. 1-80.
  • 2[2]Gopalsamy K, He X, Wen L. On a periodic neutral logistic equation[J]. Glasgow Math J, 1991, 33:281-286.
  • 3[3]Zhang B G, Gopalsamy K. Clobal attractivity and oscillations in periodic delay logistic equations[J]. J Math Anal Appl, 1990, 150:274-283.
  • 4[4]Gopalsamy K. Zhang B G. On a neutral delay logistic equations[J]. Dyn stab systems, 1998, 2:183-195.
  • 5[5]Li Yongkun. Positive periodic solution for neutral delay model[J]. Acta Math Sinica, 1996, 39(6):789-795.
  • 6[6]Gaines R E, Mawhin J L. Concidence Degree and Nonlinear Differential Equations[M]. Berlin:Springer-Verlag, 1977.

同被引文献26

  • 1王志成,庾建设.中立型时滞微分方程的振动性[J].数学学报(中文版),1994,37(1):129-134. 被引量:30
  • 2李永昆.中立型时滞模型的周期正解[J].数学学报(中文版),1996,39(6):789-795. 被引量:16
  • 3Li Y K. Positive veriodic solution for neutral delay model. Acta Mathematica Sinica, 1996, 39:789- 795.
  • 4Cao Yutin. MuItiexistence of solwly oscillating periodic solutions for differential delay equations. SIAM J.Math. Anal.1995, 26:436-445.
  • 5李正荣 李继彬.哈密顿系统与时滞微分方程的周期解[M].北京:科学技术出版社,1996..
  • 6Erbe L, Krawcewicz W, Wu J. A composite coincidence degree with applications m boundary value problems of neutral equations. Trans. Amer. Math. Soc.1993, 335:459-478.
  • 7Fang H, Wang Z. Existence of positive periodic solutions of a neutral delay competition model with diffusion and stock. In press.
  • 8Fang L, Li J B. On the existence of periodic solution of a neutral delay model of single-species population growth. J. Math. Anal. Appl. 2001, 259:8-17.
  • 9Kuang Y. Delay Differential Equations with Applications in Population Dynamics. New York:Academic Press, 1993.
  • 10Li Yongkun. On a periodic neutral delay Lotka-Volterra system. Nonlinear Analysis, 2000, 39:767-778.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部